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ABSTRACT 
 

Policy based network management has an increasing importance depending on the 

increasing importance of distributed large networks and the growing number of services 

that run on them.  Policy languages, which enable users define policies in a formal 

language, are one of the main tools of policy management.  Even though there are policy 

languages like PFDL or RPSL, none of them has the capability of a robust conflict 

detection and resolution focused on policy.  

A new Policy Language, Path-based Policy Language (PPL) [10], has been 

developed recently.  It encompasses as many of the features addressed in the other policy 

languages as possible, as well as providing means for testing policies for consistency and 

defining both static and dynamic policies.  PPL’s path-based approach enables 

establishing policies that will be based on path, like Integrated Services, as well as non-

path based policies, which are more suited for Differentiated Services.  The most 

important, PPL provides the ability to detect and resolve conflicts between by translating 

policy rules into formal logic statement and checking them with a Prolog program. 

Even though in theory PPL seems to be a very high performance policy language, 

its current compiler has a performance bottleneck.  In some cases the PPL compiler can 

not finish compilation and runs forever without returning any conflict results.  This thesis 

focuses on the PPL compiler’s performance bottleneck and introduces solutions speeding 

up the PPL compiler.  The new PPL compiler achieves a reasonable compilation time for 

any configuration file for a network with up to several hundred nodes while maintaining 

its ability to detect and resolve policy conflicts. 
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I. INTRODUCTION  

A. MOTIVATION  

The increasing importance of distributed large networks and the growing number 

of services that run on them increase the  need for effective network management.  To fill 

up a need for dynamic change in the behaviors of distributed management agents at run-

time, policy-based management is emerging as a sound mechanism to assist this.  To 

support a large distributed environment, it is necessary to reason about policies and make 

policy decisions at run-time. 

Network policies are “traffic regulations” for the networks, which make up the 

Internet.  These are necessary for managing the flow of data, for access control to the 

network, and for managing the network in achieving other types of quality of service 

goals.  Network policy allows administrators to manage network elements to provide 

service to a set of clients. Policy languages are the tools we use to declare our policies in 

a formal way. Currently popular policy languages like the Policy Framework Definition 

Language (PFDL) or the Routing Policy Specification Language (RPSL) do not have the 

capability of a robust conflict detection and resolution focused on policy.  

A new Policy language, Path-based Policy Language (PPL), which allows testing 

policies for consistency and defining both static and dynamic policies, has been 

developed for Server-Agent Active Network Management (SAAM) project [29].  PPL 

enables us to establish policies based on path like integrated services as well as non-path 

based policies like those for differentiated services.  PPL can detect and resolve conflicts 

between policies by translating policy rules into formal logic.  

Although in principle PPL should be efficient, in its current implementation there 

are performance bottlenecks.  Compilation time of a PPL configuration file depends on 

the number of edges and nodes in the network, the number of policies to be applied, and 

the way policy paths represented in the configuration file.  Some seemingly easy cases 

take a long time to run.  
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B. THESIS OBJECTIVES 

The main objective is this thesis is to analyze the PPL compiler’s performance 

bottlenecks and resolve them.  The target is a reasonable compilation time for any 

configuration file for a network of several hundred nodes without compromising the 

compiler’s ability to detect and resolve policy conflicts. 

 

C. THESIS ORGANIZATION  

This thesis is organized in seven chapters.  To understand the problem that the 

thesis tries to address, it is essential to have a basic understand ing of policy-based 

networking, Prolog, and PPL.  To this end, the next two chapters present background 

information about these related topics.  Chapter IV identifies the key bottlenecks in the 

PPL compiler and explains why they are bottlenecks. Chapter V describes the solutions 

developed by this thesis.  Chapter VI reports results from tests using the developed 

solutions.  Chapter VII presents conclusions drawn from the research and suggests areas 

for future work. 
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II. BACKGROUND 

A. POLICIES 

A policy is “about the constraints and preferences on the state, or on the state 

transition of a system [1]”.  Each policy rule is comprised of a set of conditions and a 

corresponding set of actions.  The conditions define when the policy rule is applicable.  

Once a policy rule is so activated, one or more actions contained by that policy rule may 

then be executed.  “These actions are associated with either meeting or not meeting the 

set of conditions specified in the policy rule” [2].  In short, when a set of associated 

conditions are met, a policy specifies what actions must be taken.  

Policies must be clear enough so that potential conflicts among them can be 

detected and resolved.  One way to resolve conflicts is imposing a priority and/or order 

on both the satisfaction of policy conditions as well as the execution of policy actions. 

For networks, a policy constrains communication.  Network policy defines the 

association between clients using network resources and those network elements that 

provide those resources.  A client in this case refers to users as well as applications and 

services.  Network policies allow administrators to handle network elements to provide 

service to a set of clients.  They guide the administrators to achieve overall objectives on 

the network.  For example, the overall objective of a manager for a system could be “to 

ensure 95% system up time for the users”.  

Policy benefits include:  

• Provide access control for network resources 

• Ensure applications critical to enterprise operations are accomplished 

• Deliver tiered bandwidth and differentiated services to each customer according 

to their needs 

• Manage the overall flow of traffic through internal and external networks 

In writing policies, the purpose should be to reach the overall objectives.  There 

are resources, clients (users), and requests made by users.  But unfortunately sometimes 
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our resources are not enough to reply to all requests, or sometimes we do not want some  

users to use our resources.  These limitations are reasons that we need policies. 

Network policies are usually grouped into two general categories.  In [3] and [4] 

these are obligation and authorization policies; [5] refers them as imperatival and 

authority policies; and [6] and [7] refer to motivation or authorization policies. The 

distinction is whether a policy entails some action or concerns the granting of privileges 

[2]. 

 

B. POLICIES, PRACTICES, AND PROCEDURES 

Policies are different from practices and procedures.  Policies are more general 

and abstract than practices, which in turn are more general than procedures [8].  Sample 

policies could be "Every student will have access to e-mail and calendaring applications," 

and "Permit research class traffic to and from the networks NPS and NSF."  Sample 

practices could be "New students will be assigned e-mail and calendaring accounts on 

their first school day," and "Only members of the Faculty_Management group will be 

permitted to look up confidential student data.”  A sample procedure could be: "Student 

mail accounts are named according to the following system: Firstname_Lastname. 

Duplicate first and last names are resolved by having the students with the least seniority 

insert their middle name in this way: Firstname_Middlename_Lastname. It is the user's 

responsibility to archive messages."  Another example of a procedure could be: 

"Members of Faculty will receive read-access rights to tables X, Y, and Z in the Student 

database.  They will use a six-digit PIN to log in."  

Policies are generally expressed in ordinary business language; they don't address 

implementation methods.  Practices on the other hand address implementation methods, 

but not at the level of specific products, data structures, and keystrokes; these specifics 

are covered in procedures.  The advantage of having three specification levels is that 

changing particular products or vendors should not generally require changing practices.  

Additionally, practices that do a better job of carrying out policies can be adopted without 

high- level policy debates.  Wise organizations encourage broad participation when 

formulating policies.  Widespread understanding of why policies are the way they are be 
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the case if policies were mandated by a small group of executives or the information 

technology staff.  Moving from practices to procedures is a technical (and budgetary) 

matter that should be relatively free of organizational politics.  

Different organizations have various levels of commitment to developing and 

maintaining documents related to policies, practices, and procedures.  Large, distributed 

enterprises with numerous resources will typically have a greater need than small 

organizations for documenting uniform policies, practices, and procedures.  For 

educational institutions, spelling out user responsibilities and prescribing consequences 

for abusive activities might have a high priority. 

 

C. POLICY-BASED NETWORKING 

“Policy-based networking is a set of automated rules to control congestion.  These 

rules govern which users or applications can use specified network bandwidth at any 

given time” [9].  Policy-based networking helps manage user and application priorities, 

efficiency, and security rights based on organizational policies. 

With the convergence of data, telephone, and video traffic in the same network, 

companies will be challenged to manage traffic so that one kind of service does not 

preempt another kind.  Using policy statements, network administrators can specify 

which kinds of service to give priority to at what times of day on what parts of their 

Internet Protocol (IP)-based network.  What governed by this kind of management is 

often known as Quality of Service (QoS) and is controlled using policy-based networking 

software.  A policy statement could be as natural as: "Provide the fastest forwarding for 

all voice traffic to NPS between 9 am and 3pm.” 

 

1. Definitions   

Policy is comprised of three functions: decision-making, enforcement and 

policing.  Decision-making is the process of deciding to what action take for the desired 

state.  Enforcement means the implementation of the decision.  Policing is the 

examination of the network to see whether the policy requirements are being satisfied or 

not.  A network policy defines some regulations limiting relationships between clients 
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that desire service and the network elements that provide those services.  Here, clients 

refer to users as well as applications and services. 

The policy repository is one of three important entities of the model.  The other 

entities are the Policy Enforcement Points (PEP) and Policy Decision Point (PDP).  The 

PEP is a component of a network node where the policy decisions are actually enforced.  

It may be a router, switch or hub.  PEP is not able to make decisions itself.  When the 

PEP requires a policy decision about a new flow of traffic, or authentication for example, 

the PEP will send a request to a PDP.  The PDP is the entity in the network where policy 

decisions are made.  Any PEP that encounters an event requiring a policy based decision 

first asks a PDP how to handle this request.  PDP may make one ore more policy 

decisions related to this request.  Figure 1 shows an illustration of common policy-based 

network management architecture proposed by the Internet Engineering Task Force 

(IETF) [2].  Each device does not necessarily have to be separate as shown on the figure 

nor is it required to use the same protocol.  The Lightweight Directory Access Protocol 

(LDAP) enables the communication to and from the policy repository.  The Common 

Open Policy Service protocol (COPS) [19] can be used to communicate information 

between the PDP and PEP. 

 

Figure 1.  Generic Policy Based Architecture. [After 2] 
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D. PROLOG 

 

1. Introduction 

Prolog is a computer language that supports logic programming, i.e., 

programming based on first order predicate logic [11].  Like other logic programs, Prolog 

code is easy to create and enables machines to explain their results and actions.  The roots 

of the Prolog language go back to the branch of logic called predicate calculus, which 

mathematicians and logicians use to make assertions about the world.  Then they use 

these assertions to prove theorems.  For example, by asserting that “Socrates is a man” 

and that “All men are mortal”, it is possible to prove that “Socrates is mortal” [24].  The 

Prolog operation or "search strategy" is based on these kinds of logical assertions and 

proofs. 

Logic programming is programming by description.  Thus, Prolog is classified as 

a declarative language.  The programmer describes the application area and lets the 

program choose specific operations [23].  In other words, the  programmer states the facts 

and rules which are relevant to the solution of the problem, and this information is then 

used as a program to solve the problem without the need for more advice on how to 

handle the information [12].  Rules are conditional statements, which tell Prolog to prove 

whether something is true [13].  Facts are rules with no “if” parts.  They are analogous to 

logical assertions.  Facts and rules together establish the Prolog knowledge base.  Users 

can make queries to the knowledge base by using a Prolog interpreter.  When a query is 

made, the interpreter searches the knowledge base and tries to find a matching fact.  The 

order of the rules and facts in the database is the order they are tried when more than one 

can apply to a situation [26].  An answer for a query may be simply “yes” or “no” or a 

variable binding.  

The method Prolog uses for reasoning is called backward chaining.  It involves 

working backwards, searching for justifications for a conclusion.  A Prolog search starts 

with a hypothesis and then reasons backwards in the inference network to confirm or 

refute the hypothesis.  Backward chaining helps to draw the conclusions only that are 

relevant to the goal.  Given a goal state to prove, the system will first check if the goal 
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matches the initial facts given.  If it does, then that goal succeeds.  Otherwise, the system 

will look for rules whose conclusions match the goal.  One such rule will be chosen, and 

the system will then try to prove any facts in the preconditions of the rule using the same 

procedure, setting them as new goals to prove.  Backward chaining does not need to 

update a working memory.  Instead it needs to keep track of what goals it needs to prove 

to prove its main hypothesis.  A disadvantage of backward chaining is that the user has to 

state all the relevant information as facts in advance, so there is a danger of stating too 

much or too little.  Figure 2 shows a backward chaining process. 

 

 
Figure 2.  A backward chaining process [From 27]. 

 

 2. Important Prolog Features 

Though Prolog can be a difficult language to master, Prolog programs are usually 

short when compared to their procedural equivalents.  Prolog has other advantages too.  

Flexible variable binding is one of the important features of Prolog. In Prolog, unlike in 

imperative programming, variables can remain uninitialized indefinitely [25].  The 

possible values of variables are terms, which may be atoms (names of individuals and 

predicates), integers, structures, or clauses.  Variables can get bound in query matching 

and may be returned as a possible answer to the query.   
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copied to the corresponding variables in the conclusion of the rule.  If the rule is to 

succeed, none of the bindings should conflict with a constant in the conclusion of the 

rule.  This is "head matching" with "call-by-value" [26].  When a rule succeeds, all 

bindings (besides head matching) that it made of its conclusion's variables are copied to 

the corresponding variables in the calling expression [26]. 

The other important feature of Prolog is automatic backtracking.  There may be 

several rules unifying with a query.  If a rule fails, Prolog automatically backs up and 

tries another rule to return an answer for the query.  Prolog uses the same backup process 

for the expressions in the rules. If an expression fails, Prolog interpreter returns to the 

previous expression (if any) and tries to find a new way to satisfy it [26].  

 

3. An Example of How Prolog Works 

A simple example helps understanding better how Prolog works.  Consider two 

pieces of information that have been inputted into the Prolog knowledge base: 

1- For any X, If X is in California, then X in United States.  

2-Montery is in California.  

Assume user wants to learn whether Monterey is in United States and ask this question to 

the computer: 

Is Monterey In United States? 

By looking at its knowledge base, the Prolog interpreter can: 

1-Prove that X is in California, in case it to be in United States.  

2-Unify X with Monterey and see whether it is in California. 

After these steps, the answer is “true”, because the knowledge database indicates that 

monterey(X) is in California, so monterey(X) is in United States. In the Prolog 

notation, the knowledge base would be: 

1- in_united_states(X):- in_california(X). 

2- in_california(monterey). 
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Here, statement-1 is a rule and statement-2 is a fact; in_united_states and 

in_california are predicates which are type assertions for their arguments.  A 

predicate can take any fixed number of arguments.  This number of arguments is the arity 

of the predicate.  monterey is an atom, because it is a constant name.  Statement-1 is 

also a clause, which constructs a structure with statement-2.  One important point to 

know is that only variables in Prolog start with a capital.  Terms are the single data 

structure in logic programming.  The definition is inductive.  Constants, variables or 

structures are terms. 

 

a. Unification and Variable Instantiation 

The first step in solving any query is to match or unify the query with a 

fact or the left hand side (the head) of a rule [15].  Unification can assign a value to a 

variable in order to achieve a match; which is referred as instantiating the variable.  

Consider the database with five clauses below.  The user is trying to learn 

whether Monterey is in North America. 

1- in_north_america(X):- in_united_states(X). 

2- in_united_states(X):- in_texas(X) 

3- in_united_states(X):- in_california(X). 

4- in_texas(austin). 

5- in_california(monterey). 

 

 Goal             :  in_north_america(monterey). 

          Clause          :  in_north_america(X):- in_united_states(X). 

          Instantiation :  X = monterey 

          New Goal     : in_united_states(monterey).  

The new query can be unified with the third clause as follows: 

            Goal            :   in_united_states(monterey). 
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            Clause         :  in_united_states(X):- in_california(X). 

            Instantiation :  X = monterey 

            New Goal    : in_california(monterey).  

This query matches the clause-5.  Because there is no “if” part in clause-5, there is no 

need for more queries; the answer will be “Yes” for the main query. 

 

 b. Backtracking 

There are two rules unifying with the query above.  Prolog could 

have unified clause-4 first with the query.  Then the new goal would be: 

 in_texas(monterey). 

which would fail.  As in other modern programming languages, such an erroneous call 

does not abnormally terminate the program’s execution, but activates an error handling 

mechanism.  In contrast to other languages, however, the error is not necessarily 

performed by an active procedure present in the activation stack [16].  Prolog uses a more 

general method and takes into account even those procedures which returned to the user 

after successful termination. 

 Prolog attempts to satisfy the goal in a left to right progression; 

which is called “goal-directed depth first search” [17].  Each goal to be satisfied 

generates a sequence of searches for Prolog to perform that can be visually presented as a 

tree structure.  The search tree of the knowledge base for the goal above is shown below 

in Figure 3.  Because the knowledge base has no fact in_texas(monterey), the query 

fails.  But because there is another clause which can be unified with our goal, Prolog 

backtracks and this time tries to find the answer by unifying the goal with the other 

clause.  This attempt succeeds and the Prolog exits the query with the answer “Yes”.  
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          Figure 3.  A sample Prolog search tree. 

 

 

 

 
 
EXIT 

 
 
   FAIL 

EXIT 

 
 
CALL 

 
CALL 

    FAIL 

CALL 

in_north_america(monterey). 

in_united_states(monterey). 

in_texas(monterey). in_california(monterey). 

in_texas(austin). in_california(moterey). 

 
CALL 

 
 
CALL 

 
 
FAIL 

 
REDO 

 
 
EXIT 



13 

III. THE PATH-BASED POLICY LANGUAGE (PPL) 

A. INTRODUCTION 

There is a need for tools enabling users to apply policies over networks.  One of 

the languages developed for this purpose is Path-based Policy Language (PPL) [10].  The 

purpose for creating it was to solve and/or alleviate many of the deficiencies of the 

previous policy languages.  This new language has “the ability to represent network 

policies unambiguously, providing support to heterogeneous networks for which the 

networks are controlled using explicit policies.” [10].  PPL supports both path and non-

path based traffic flows.  It also has the ability to support conflict detection and resolution 

with the use of formal logic. 

 

B. GOALS 

The main goal of PPL is to support policies applicable to differentiated service, 

integrated service as well as multiprotocol label switching models proposed by The 

Internet Engineering Task Force (IETF).  The PPL’s goals [10] are listed in Table 1.  

 

PPL GOALS 

1 Create a path-based representation of policies flexible enough to support both path and 

non-path based traffic flows. 

2 Represent network policies in an unambiguous way 

3 Be abstract enough to cross device and manufacturer boundaries 

4 Detect and resolve conflicts between polices 

5 Support the dynamic aspect of networks 

Table 1.  Summary of the goals of PPL [From 10]. 
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One of the outstanding abilities of PPL is supporting policies based on dynamic 

factors such as packet delay and packet loss rate, along with static policies on attributes 

such as traffic class or network address.  Because the state of a network is rarely constant, 

a good policy language should be able to represent network policies based on dynamic 

factors as well as constant ones.  To support a dynamic network, PPL provides the ability 

to react to dynamic conditions of the network.  The messages that can be defined by 

policy maker provide feedback to the system about the current state of the network for a 

reaction. 

 

C. PPL POLICY FORMAT 

A PPL rule consists of six elements which must be ordered for the format shown 

in Figure 4.  

PolicyID  userID  {paths} {target} {conditions} {action_items} 

policyID - unique policy identification token 

userID  - user ID of policy creator 

paths  - network paths that the policy affects.  They must be defined by  

  the users in formal language.  

target  - user defined target class of network traffic, like data, video, voice  

  etc.  For more than one traffic class, items are disjunctive. 

conditions -any global conditions like a specific day, time or dynamic  

  conditions like a bandwidth value.  Dynamic conditions are  

  controlled by messages. With more than one defined condition, 

  items are conjunctive. 

action_items  - includes setting parameters (e.g. priority), deny or permit, etc. 

 
Figure 4.  Summary of PPL format [From 10] 

 

For scalability in large networks, PPL has a wildcard (“*”) character. It can be 

used in policy definitions to represent all paths, all paths between two spesific nodes, all 
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target traffic classes, or all global conditions that  can be used to create policies.  A few 

examples will make clear how to create policies in PPL.  

Example 1: Policy 1 net_manager {<5,7,9>} {traffic_class == {data}} {*} 

{priority := 3}; 

policyID       : Policy 1  

userID           : net_manager 

paths          : <5,7,9> 

target          : {traffic_class == {data}} 

conditions    : {*}- All 

action_items: {priority := 3}.  

This rule states that the path starting at node 5, traversing to node 7, and ending at 

node 9 will provide priority level 3 for data traffic at any conditions.  Here the use “*” 

character can be seen.  

Example 2: Policy4 xie{*}{traffic_class = {data}}{allotted_bw() == 45MBPS,  

loss_rate () <25%} {allotted_bw := 35MBPS}; 

policyID       : Policy 4  

userID           : xie  

paths          : {*}-All 

target          : {traffic_class == { data }} 

conditions    : {allotted_bw() == 45MBPS,  loss_rate () <25%} 

action_items: {allotted_bw := 35MBPS} 

This policy shows the ability of supporting dynamic policies by the user created 

messages.  Data traffic is provided with an allotted bandwidth of 45 Mb/s, but when the 

network loss rate is less than 25%, the allotted bandwidth will be lowered to 40 Mb/s. 
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D. PPL DETAILS 

 

1. How PPL Supports Integrated Services 

As mentioned one of the purposes of PPL is to support both integrated and 

differentiated services.  The “path based” structure of PPL enables users support 

integrated services, which provide QoS assurances on a per- flow basis.  A PPL policy 

may allocate and reserve enough resources for any specific flow of packets.  Any path 

which cannot support that policy will be rejected. 

In PPL the paths which are affected by that policy must be specified.  The users 

have the flexibility of including many paths for that policy as long as they separate them 

by a “,” character. The example below shows a policy that the user wants to apply to four 

different paths. The paths are also defined and named by the user.  

Policy1 guven {path1, path2,path5,path12}{*}{*}{deny} 

It was mentioned that the paths are defined by the user.  This is also a very easy 

process with PPL “define path” statements.  For example “path1” in the example might 

have been defined by: 

define path path1{NPS, SPAWAR,DARPA} 

This says that the user wants to include nodes NPS, SPAWAR and DARPA in a 

path named path1. 

The nodes in the network must be defined by a “define node” sentence.  For a 

higher granularity of QoS application, PPL enables use apply policies even to specific 

nodes.  The relations among those nodes (links) are identified with a “define link” 

sentence.   

define node NPS, DARPA, SPAWAR 

define link link1<NPS, DARPA> 

define link link2<DARPA, SPAWAR> 

There may be policies which user wants to apply the whole network or to all 

possible paths in the network, for which the user can use the wildcard (“*”) character.  
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The wildcard character can also be used for the other elements in the PPL format like 

target or conditions.  The sample policy below denies all traffic under all conditions in 

the whole network. This is a static policy which does not depend on dynamic aspects like 

‘delay’ or ‘loss rate’.  

Policy2 net_manager {*} {*} {*}{DENY} 

For integrated services based on certain conditions through a path PPL provides a 

conditions argument in a policy statement.  To execute that policy, all the conditions 

listed in a policy rule must be met.  The following examples show usage 

Policy3 net_manager {path1} {*}}{time <=1700} {DENY}; 

Policy4 net_manager {*}{traffic_class == {video}}{jitter() <2 msec, delay() < 4   

msec}{PERMIT}; 

Policy3 can be applied only before 5.00 pm. Policy4 permits “video” traffic only when 

jitter is less than 2 msec and delay is less than 4 msec.  

As can be seen in the examples, a user defines at the end of policy statement an 

action that must be taken.  The user can choose one of DENY/PERMIT or a dynamic 

reaction as an action_item.  The following example shows how to using a dynamic 

action_item in a policy statement.  Policy4 gives data class of traffic first priority after 

5.00 p.m.  

Policy4 guven {Path1}{ traffic_class == {video}} {time>1700} {priority := 1} 

 

2. How PPL Supports Differentiated Services 

The logic behind the differentiated services is offering different services to 

differently marked packets by creating several packet classes.  This concept allows, for 

example, giving different priorities to packets that belong to students and those that 

belong to faculty members, or to packets of data and to packets of voice.  The user should 

define the required classes of traffic and user classes for those traffic classes that may be 

used.  
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The priorities that may be given for any traffic class should also be defined by the 

user as a different class.  The priority of that class of traffic is the main factor for a node 

when it needs to make a decision between two types of traffic classes.  The examples [10] 

below show how a user can define classes of traffic, users and priorities: 

define class traffic_class {data, video, voice}; 

define class traffic_priority {high, med, low}; 

define class user {faculty, student, staff}; 

To use this, the fourth element in PPL format is the target of the policy:  

Policy1 guven{Path1} {traffic_class == {video}, {traffic_priority == {high}}{*} 

{PERMIT}; 

This policy permits on Path1 only video traffic that has high priority.  When multiple 

classes of traffic are presented in a policy statement as a comma separated list, the classes 

are logical disjuncts [10]. 

 

3. How PPL Supports Dynamic Policies 

PPL enables users to define policies not only for static network conditions, but 

also dynamic aspects like “delay” or “loss rate”.  Because those values can change 

anytime in the network, we need a feedback mechanism from the current state of 

network.  User defined messages represent information update about some measurable 

attribute of a network.  For example a message identified as delay() might provide the 

time required to travel from point A to point B in a network in milliseconds [10]. 

To use a message element, the user must associate the message with a path.  The 

example below shows this.  The user associates a loss_rate() message with the Path1 and 

also assigns a bandwidth to Path1 by using define path_param statement.  This policy 

denies student traffic when the loss rate on the Path1 is over 40%.  

define path_param Path1 {BW := 100 MBPS, loss_rate()}; 

Policy3 net_manager {Path1}{traffic_class == {student}} {loss_rate() > 40%} 

{DENY}; 
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E. POLICY CONFLICT DETECTION AND RESOLUTION 

One of the major advantages of PPL is its ability to detect and resolve policy 

conflicts unambiguously.  The previous languages were not as powerful as PPL in this 

aspect.  The conflict detection and resolution process starts at the PPL compiler by 

parsing written policies.  While parsing, the compiler verifies that policies are written in 

correct format and grammar.  Then a formal logic representation of those policies is 

created [10].  The created file represents the network (all nodes, links, policies, etc.) in 

logic statements. 

The reason for creating a file, which represents the network in logic statements, is 

that Prolog language is being used for detection and resolution of conflicts in the policies.  

As explained before, Prolog is a language for logical reasoning, which has automatic 

backtracking and flexible variable binding.  Because the items to be checked are a set of 

policy statements defined on a network, these features enable Prolog to be good for a 

conflict detection and resolution process.  We describe “what causes conflict” (rules) by 

Prolog rules and have the interpreter search the policy database for conflicts.   

Figure 5 shows the PPL file compilation process that is proposed in [10].  

Compilation starts with the acceptance of a PPL configuration file containing network 

construction information and network policies.  The result of parsing this file is a 

representation of the entered info in logic statements.  This is the starting point of a three-

stage process of Prolog conflict detection and resolution.  Although the three stages could 

have been accomplished in just one stage, multiple stages provide an incremental means 

to verify correctness [10]. The three Prolog stages will be overviewed in Chapter V. 
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Figure 5.  Overall process flow [From 10]. 
 

The output file after the Prolog stage 3 lists the resolved and unresolved conflicts 

between policies in an ASCII format.  If two policies are created by users having a 

different level of priorities, conflicts are resolved in favor of the higher-priority policy 

creator.  The operator can see both resolved and unresolved conflicts by checking the 

output file. 

 

1. Detecting Conflicts 

Because PPL is based on paths, policies effective on the same paths are compared 

for conflicts.  If there is no overlap between two paths, no need exists for comparing 

policies defined on them for conflicts.  

PPL Compiler

PPL
Configuration

File

Network Configuration
& Policies

Logic Code
Stage 1

Network Configuration
& Policies

Logic Code
Stage 2

Network Configuration
& Policies

Logic Code
Stage 3

Policy Conflicts



21 

PPL uses the general definition of conflict for two network policies to describe 

how conflicts occur:  

Given a set of policies P, a conflict exists if for any 2 policies r, s ∈ P, all of the 

following hold: 

1. Physical paths of r and s overlap on at least one path segment; 

2. Time and network conditions specified in the conditions elements of r 

     and s overlap; 

3. There is a target a which is permitted in r, but denied in s (or 

    conversely). 

The PPL conflict detection process in [10] is based on the definition above. First, 

all policies that contain overlapping paths (physical) are found.  After this step, the 

number of overlapping paths to examine is decreased by picking only the ones that have 

overlapping conditions (timing, network conditions, etc.).  By comparing target & 

action_item of those polices it can be determined whether those policies conflict or not. 

Conditions are the rules restricting flow of traffic on defined paths.  These 

conditions may limit the traffic hours or may only permit traffic when the bandwidth has 

a previously defined value (dynamic).  

If two paths have overlapping points, and they have policies defined for the same 

conditions (for example both policies allows traffic only on weekends), their target and 

action_items must be checked to detect the conflict.  Target refers to the class of traffic 

for which the policy works.  If those overlapping policies do not have the same target 

traffic class, there is no conflict; otherwise, the action item of policies must be identified.  

If one of the policies denies and the other permits the same target class of traffic, it is 

considered as a conflict. 

 

2. Some Conflict Samples 

Conflicts in PPL occur when one of the policies permits a specific kind (target) of 

traffic, even though another policy does not permit that kind of traffic under the same 
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conditions on some common links.  Conditions of a policy define the time when the 

policy is active (like certain days of week, or certain times in a day) or characterize target 

traffic based on packet header information.  If there are more than one condition item, 

they are conjunctive. It is clear that a policy permitting data traffic on defined path1 for 

all days of week will conflict with a policy denying data traffic on path1 even one day of 

the week.  The samples below illustrate some possible policy conflicts.    

Policy1 Net_Manager {NPS_DARPA}{traffic_class == {video}}{time >= 1100} 

          {deny}; 

Policy1 is a sample policy created by network manager.  It denies video traffic after 11.00 

a.m on the NPS-DARPA link. The time representation in PPL is based on 24 hour 

system. 

Policy2 Net_Manager {NPS_DARPA}{traffic_class == {video}}{time >= 1100} 

            {permit}; 

Policy2 permits video traffic on the same link after 11.00 a.m.  Policy1 denies what Policy2 

allows, so they conflict with each other. 

Policy3 Net_Manager {NPS_DARPA} {*}{time >= 1100}{permit}; 

This policy permits any kind of traffic after 11.00 a.m.  But Policy1 denies video class 

traffic at the same time period, and conflicts with it.  

Policy4 Net_Manager {*}{traffic_class == {video}}{time >= 1100} 

            {permit}; 

This policy allows video traffic after 11.00 a.m. on the whole network and also conflicts 

with Policy1.  

Policy5 Net_Manager {*}{*}{*}{permit}; 

This policy permits any kind of traffic on the whole network at any time and conflicts 

with Policy1.  

Even while specifying parameters for the network, users can choose conflicting 

values, as for example:  
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define link NPS_DARPA<NPS,DARPA>; 

define link DARPA_SPAWAR<DARPA,SPAWAR>; 

define path NPS_SPAWAR{NPS_DARPA,DARPA_SPAWAR}; 

define link_param NPS_DARPA{BW:= 150 MBPS}; 

define link_param DARPA_SPAWAR{BW:= 150 MBPS}; 

define path_param NPS_SPAWAR{BW:= 450 MBPS}; 

When the links NPS_DARPA and DARPA_SPAWAR are defined with a bandwidth of 150 

Mbps each, there is no way path NPS_SPAWAR constructed from these links can be 

defined with a 500 Mbps connection, so a conflict exists.  We also cannot create a policy 

with a message element if the path associated with that policy does not support the 

required message element.  

The user attribute in the target item can also cause conflicts. Consider: 

 Policy6 net_manager {*} {traffic_class == {voice}{user == guven} {deny} 

 Policy7 net_manager {*} {traffic_class == {voice}{day != saturday } {permit} 

Policy6 denies voice traffic from user ‘guven’ at any time. But the Policy7 permits voice 

traffic any day except Saturdays. Because no users are specifically mentioned, Policy7 

covers all users and conflicts with Policy6.  

Like users, restrictions may be applied to specific IP addresses by a PPL policy, 

which is another reason for a conflict:     

Policy8 net_manager {*} {traffic_class == {voice}{131.120.10.*}{deny} 

          Policy9 net_manager {*} {*}{131.120.*.*}{permit} 

Even though Policy9 permits any traffic from the IP address group 131.120.*.*, Policy8 

denies voice traffic from a subnetwork of that IP address group.  
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3. Resolving Conflicts 

As explained before, the first element of PPL policy format is the policy creator.  

In a PPL configuration file, users who can make policies must be defined.  While listing 

user_id’s, a priority level must be defined for each user.  Here is an example: 

define policy_maker Net_Manager(1), Xie(3), Stone(3), Guven(4); 

When two conflicting policies have different creators, the priority levels of their creators 

are compared and the conflicts are resolved in favor of the higher-priority policy creator.  

When the policies have the same creator, or when the creators have the same priority 

level, automatic conflict resolution is not possible.   

 

F. CHAPTER SUMMARY 

This chapter includes general information about the PPL, the basic subject of this 

thesis.  PPL has new features like path-based representation, support of both static and 

dynamic policies, support of future traffic classes, “message” support for existing and 

new network measurements, and the ability to scale well in large networks.  A major 

contribution made by PPL is the ability to test for conflicting network policies and 

resolve them before they are disseminated throughout the network.  We described the 

causes of PPL policy conflicts and how they are detected and resolved by the PPL 

compiler. 
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IV. PROBLEM DIAGNOSIS 

A. THE PERFORMANCE OF THE PREVIOUS PPL COMPILER 

Because [10] was focused on detecting and resolving conflicts correctly, the 

performance of the PPL compiler was not emphasized during the implementation of the 

compiler and policy tester [10]. 

Table 2 below shows the results of a test we made on five different simulated 

networks by using the compiler presented in [10].  The values in the table are total time to 

process and to test for conflicting policies.  The time of PPL compiler was measured from 

the time of entering the PPL configuration file until printing out of conflict results.  

Sample networks differ by the number of nodes they have (10, 30, 40, 80 or 120) and the 

number of policies applied to them.  For the test runs, a computer with a Pentium-IV 1.2 

GHz. processor was used. The same computer will be used for testing the compiler 

improvement later in this thesis.  

 

Number of 
Nodes 

Num. of 
Policies 

Num. of 
Paths 

Compilation 
Time(seconds) 

10 11 377 10 
30 11 2271 120 
40 20 8364 420                
80 20 - 8  
120 20 - 8  

Table 2.  Compilation test results with the previous PPL compiler. 

 

Except for the 10-node network, all sample files use wildcard characters for 

representing paths, targets or conditions.  The “8 ” sign next to 80 and 120-node policy 

files means that the compilation has not ended after 24 hours.  

In [10], “scaling in large networks” was listed as one of the most important 

contributions of PPL.  Thus these PPL compiler performance tests show a problem, that 

PPL is not feasible in networks having more nodes than 40.  So our goal was to improve 

the performance of the PPL compiler and enable it to work for networks with hundreds of 

nodes.  
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B. THE CAUSES OF THE PERFORMANCE BOTTLENECK 

In previous chapters it was mentioned that the conflict detection code of the PPL 

compiler consists mainly of two parts: parsing code written in C, and conflict detection 

code written in Prolog.  Those two parts work hand and hand to compile the policies and 

detect the conflicts.  The Prolog code is also divided into three parts.  To find the 

problem, a step by step approach is performed for each code segment, starting with the 

parsing code in C. 

Whatever the length of the sample file, the number of nodes in the network or the 

number of policies created, parsing noticeably ends in a few seconds.  As a result the 

problem clearly was not in the C code.  Therefore, the research was focused on the 

conflict detection code written in Prolog.  For a better understanding, it is necessary to 

know what each Prolog stage does and which algorithms are being used at each stage.  

 

1. Prolog Conflict Detection and Resolution Stages in Detail 

As explained in preceding chapters, PPL can use the wildcard character in 

representing paths, which is easy for the user and a savings for policy storage.  For 

example, the policy creators can just write “*” to represent all possible paths for the 

policies they want to apply to the whole network, or represent all paths between node A 

and node E just by writing {A,*,E}.  

How this compression works is demonstrated in the sample partial network shown 

in Figure 6.  The user wants to represent all paths from node A to node E.  Rather than 

listing three separate paths, the user can write {A,*,E}.  The advantage increases when 

there are additional paths between node A and node E. 
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Figure 6.  Representations by wildcard characters. 
 

Other variations of using a wildcard character are possible.  For example users 

who want to represent all paths using node C can write {*,C,*}.  This “compression” 

definitely helps users while creating policies; however, the question remains as to which 

paths and nodes are compressed under those wildcard characters.  

The original implementation has a two step approach for expanding policy paths 

with wildcard characters.  First the compiler finds all possible paths in the network, and 

then selects the paths that match the policy path description.  Stage 1 finds all possible 

paths in the network, prints the associations between policy labels, policy targets and 

policy conditions, and feeds these facts into the file “ppl2”, which is the knowledge base 

for Prolog stage 2.  To find all paths in the network between node A and node B, the 

network is searched by depth-first search first from A to B to find an acyclic path.  All 

possible alternatives are tried along the path until all different paths have been found.  

(For example, Figure 7 shows two possible paths between two nodes labeled A and B.)  

To find all paths in the network, this algorithm must be repeated for all possible node 

pairs listed in the PPL configuration file. 
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Figure 7.  Two different paths detected between same nodes with the previous 

search algorithm. 
 

Stage 2 examines the paths created by the first stage and eliminates those that are 

inconsistent with the given path specifications.  For example, a policy with the path item 

{A,*,E} requires selection of paths starting with node A and ending with node E.  Prolog 

stage 3 then detects conflicts of those overlapping policies.  To find the overlapping 

paths, each path is compared against one another to find an overlapping path segment.  

That overlap could be either a node or link on the paths [10].  If an overlap is found, the 

target and conditional elements of each policy are compared.  If they have compatible 

conditional elements and target traffic classes, then they conflict if their action items 

conflict.  Some conflicts can be resolved by the PPL compiler described before.  

 

2. The Performance Bottleneck 

To analyze the performance bottleneck, each Prolog stage was run separately.  

Stage 1, when testing the 80 and 120-node sample file, ran for days without giving any 

result.  Because a problem occurred as the number of nodes increased, it appeared that 

A 

B 

A 

B 
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performance is related to the number of paths required to be generated for wildcard 

matching.  The flexibility of the path representation provided by PPL was a bottleneck 

because the path finding was not polynomial in time.  But the wildcard symbol is very 

beneficial because it allows more flexibility in path representation, smaller policy 

databases, and less bandwidth to transmit path information to network enforcement 

points. 

The Prolog code was found and examined.  It can be seen in Appendix A that 

depth-first search is being used to find all paths between two nodes in the network.  

Considering that the complexity of the depth-first search for all paths between two nodes 

is ( )hO d  (where d  is average number of children per state and h  is the average depth), 

and also considering that this algorithm is being used by each pair of nodes, we get the 

complexity of
2

( )hn
xO d 

 
 

 which is not polynomial.  This suggests we find a better 

algorithm finding paths between two nodes.   
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V. IMPROVING THE PPL COMPILER 

A. RESOLVING THE PERFORMANCE BOTTLENECK  

Finding all possible paths in a network is similar to the famous NP-complete 

Hamiltonian Cycle problem.  This suggests it is also an NP-complete problem because 

there are n2  possible paths in a fully connected network with  n  nodes.  NP-complete 

problems have time complexity that is an exponential function of the problem size. 

The first question is “Is it really required to find all possible paths in a network to 

find whether any two overlap?”  Not necessarily; it's just simple to implement.  Changing 

the code to find paths only between the nodes mentioned in policy paths is a valid 

restriction and not hard to implement.  But that is not enough to solve our bottleneck 

problem because it does not reduce the exponential complexity of the algorithm. 

 

1. A Bidirectional Search Algorithm 

One idea is to use bidirectional search instead of depth-first search to find paths.  

The previous path finding started from a node trying to find a way to the other.  However 

if the search works from both nodes at the same time, the depth of each search would be 

cut in half, so the exponent of the exponential of the search time would be cut in half, a 

dramatic saving.  Because the new search algorithm is a better managed Prolog 

algorithm, the results for the small networks were very pleasing; the compilation of the 

same 40-node PPL configuration file took 4 minutes, almost two times faster than the 

previous path finding algorithm.  But experiments with this idea on the 120-node network 

were not so satisfying.  

 We then modified the search to obey a depth limit.  The algorithm travels forward 

and backward a number of steps up to an integer value the user assigns as depth.  The 

number of returned possible paths and the time spent is related to the depth value the  user 

chooses.  If the user chooses a bigger depth, more paths will be returned, but it is no 

longer possible to get all solutions unless we pick an extremely large depth value. 
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Some experiments were done to find the optimum depth value to obtain an answer 

in a reasonable amount of time with correct conflict detection results.  The new algorithm 

was also tested with different processor speeds to observe the effects on computation 

time.  After these experiments, which are explained in Chapter VI, it was clear that 

finding all possible paths between two nodes in large networks with like 120 nodes took a 

lot of time.  So we next focused on the question of whether we really must know all paths 

between two nodes in all cases to find conflicts with other paths. 

 

2. Using Articulation Points 

a. Using Articulating Points and Biconnected Components for 
Conflict Detection and Resolution 

If a node breaks the graph into more than one disconnected component 

when removed it is called an articulation point [18].  This can be formalized by defining 

a as an articulation point of graph G if, and only if, vertices v, w exists; such that v, w, a 

are distinct and every path from v to w contains a [21].  If we remove all articulation 

points from a network, the network will be separated into its biconnected components.  A 

graph G is called biconnected if for every distinct triple of vertices v, w, a there exists a 

path between v and w not containing a [22]. 

Even if it is impossible to know all paths represented by a wildcard 

character without expanding them, articulation points that divide a network into its 

biconnected components may help to make predictions without expansion.  Consider the 

sample networks shown in Figure 8 and Figure 9.  Figure 8 has three articulation points 

that are marked.  Figure 9 is a network without articulation points except NATO.  

Assume the user defined paths path1={UN,*,NATO} and path2={NASA,*,IETF}.  In 

Figure 8 the path {UN,*,NATO} represents only the link {UN,NATO}.  Two different paths 

are represented by {NASA,*,IETF}: {NASA,IETF} and {NASA,NPS,DARPA,IETF}. As seen 

in the expanded path definitions, path1 and path2 have no physical overlap. 
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NPS NASA

DARPA IETF
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NATO

CERT

U.N.

FDA

 
Figure 8.  A sample network with marked articulation points. 

 

Figure 9 is a modified form of Figure 8; a link is added between nodes 

IETF-NSF and nodes FDA and CERT are removed.  In this form, IETF and DARPA are 

no longer articulation points.  If we expand the same path definitions on this network, the 

result will be different.  Even though {UN,*,NATO} represents the same link, there are 

more detected paths when we expand {NASA,*,IETF}.  For example this time the paths 

{NASA,NPS,DARPA,SPAWAR,NATO,NSF,IETF}, {NASA,NPS,DARPA,NSF,IETF}, 

{NASA,NPS,DARPA,SPAWAR,NSF,IETF}, are also paths represented by {NASA,*,IETF}.  

This time path1 and path2 overlap.  
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Figure 9.  A sample network with only one articulation point.  

 

When the number of articulation points decreases further and the network 

takes on a mesh topology, two policy paths which did not have overlapping links before 

turned out to be overlapping path definitions.  This means that connectivity of the 

topology is an important issue in overlap detection.  As a result, if the network can be 

separated into its biconnected components, it will be possible to make some guesses and 

simplifications while comparing paths.  See the theorems in Appendix E. 

 

3. A New PPL Conflict Detection and Resolution Process 

We can apply the theorems in Appendix E to PPL conflict detection and  

resolution.  Knowing the articulation points and biconnected components will let the 

compiler to make predictions when comparing two policy paths.  The general case of two 

arbitrary policy paths is too complex to deal with here, but we can illustrate the necessary 

reasoning for one example.  Assume there are two policy paths, path1 and path2, that are 

defined by {A,*,B} and {C,*,D} respectively.  There are five possibilities for nodes A, B, 

C and D.  

1. A, B, C, and D are in the same biconnected component.  

2. A and B are in a biconnected component and C and D are in a different 

component. 
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3. A and C are in a biconnected component and B and D are in a different 

component. 

4. Three of the four nodes are in the same biconnected component, but 

not the fourth. 

5. Each node is in a different biconnected component. 

 

We analyze the above cases as follows.  

Case 1.  The first theorem in Appendix E proves that in a fully connected 

bidirectional topology, any link is a part of the representation {A,*,B} or {C,*,D}.  If the 

directionality was not important, it is clear that there would be no need to expand the 

defined paths because of absolute overlap.  

Nonetheless the link directions are important in PPL conflict detection and 

resolution process.  For example, even though path {A,E,B} has a physical overlap with 

the link {E,B}, the link {B,E} is not considered as an overlap.  The basic overlap elements 

are directed links, not nodes. 

Because of the importance of direction of the links, in this case no prediction 

can be made about an overlap without expanding paths and comparing them for 

overlapping links.  

There is an important issue to pay attention to when creating paths.  All the 

path links between source and destination must belong to the biconnected component, 

because the biconnected component is disconnected from the rest of the network and both 

source and destination nodes are in the same biconnected component. 

Such analysis enables using a limited number of nodes while searching for the 

possible paths.  For this purpose, the depth limited bidirectional path search algorithm 

was revised.  With this revised algorithm, to find the paths between two nodes, where 

both of the nodes are in the same biconnected component, node names and the members 

of the biconnected components are sent to the function at the same time.  The algorithm 

selects only the nodes in the biconnected component list to create portions of paths within 

the component.  Even though in some cases the depth limited bidirectional search 

algorithm must still be used, the number of nodes it must consider can be reduced.  Since 
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the complexity of the NP-hard problem is directly related to the number of nodes in the 

network, the path finding process will be faster depending on the size of biconnected 

component.  

Case 2.  Due to the definition of articulation point and the biconnected 

component, all paths between any node pair in a biconnected component contain only 

nodes in the same biconnected component.  This means paths {A,*,B} and {C,*,D} do not 

have an overlapping link.  As a result, there is no need to expand and compare paths for 

overlap detection.  There would be no overlap.  

Case 3.  In this case, both source nodes are in the same biconnected 

component and both destination nodes are together in another biconnected component.  

The paths going from source to destination must use articulation points as “gates” to visit 

another biconnected component.  Since both paths searches are in the same direction 

(towards the articulation point to visit the biconnected component where source nodes 

are) for Theorem 1 of Appendix E, overlapping links will occur between two policy 

paths.  Therefore in this case there is no need to expand paths. There is an overlap.  

Case 4.  This case is similar to Case 1.  Due to the importance of the link 

directions, that no easy way exists to detect path overlaps.  The compiler still has the 

advantage of using revised version of search algorithm which limits the number of nodes 

used in path expansion because at least one source and one destination node are in the 

same biconnected component. 

Case 5.  This is another case in which no shortcuts can be used.  The compiler 

has to look for expanded versions of policy paths.  After the expanded paths are detected, 

the policy paths are compared for physical overlap. 

The cases that are not covered with the previous special cases will be 
handeled by the bidirectional search algorithm. 

These above cases are for two policy paths both using the wildcard character.  

Similar guesses are also applied to situations where one of the two paths does not use the 

wild card character. The simplest case is when comparing a node with a path with the 

wildcard.  If the node is in the same biconnected component with either of the source or 

destination node of the wildcard represented path, there is an overlap due to the first 

theorem of Appendix E. On the other hand, if the source and destination node of the 
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wildcard path are in the same biconnected component that does not contain the node of 

the other path, there is not an overlap case due to the second theorem of Appendix E.  

If one of the policy paths is a link and the other is a wildcard represented 

policy path, it is worthwhile to check whether the two end nodes of the first policy path 

are in one biconnected component while the source of and destination nodes of the 

wildcard path are together in a different biconnected component.  The is because the 

condition is the same as Case 2 above, in which case there is no overlap. 

 
4. Changing the Order in Conflict Detection and Resolution Method 

Another improvement that we did to the previous implementation was to postpone 

the check for path overlap to the end of the policy comparison algorithm since it requires 

the most time.  We first compare policy definitions for condition overlaps by a 

polynomial algorithm.  Policies which have overlapping conditions are checked for target 

overlaps, which can also be done with a polynomial algorithm.  Only if the policy 

definitions have both overlapping targets and overlapping conditions are they compared 

for path overlap.  

 
5. A New Policy Conflict Detection Algorithm 

Results of all these improvements were applied to the conflict-detection process 

by a new algorithm.  The three step Prolog code approach of the previous compiler is 

kept for managing and debugging advantages.  

The first stage starts by finding the biconnected components of the network 

topology under consideration.  Then, the associations between policy labels, policy 

targets, and policy conditions are listed.  All this information along with other 

information that will be used in the following steps (like node and link information) is 

written in a file to be used in Prolog stage 2. 

The most important issue in Prolog stage 2 is making the associations between 

policy paths, policy conditions, and policy targets.  After each policy label and the path 

definition are associated, the conditions and the targets that are related to that policy and 
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the path where it is applied are written to a file to use in Prolog stage 3.  In addition, 

information about biconnected components and network links are forwarded to stage 3. 

In Prolog stage 3, conflicts are detected and resolved as described at the end of the 

last section.  If there is a conflict, the result is written to the “scan.out” file to let the 

policy creator know about the conflicts.  Resolved conflicts are also printed to inform the 

users. 

The new algorithm is as follows: 

 

find_conflicts( ) 

1. biconnected_components()  / find network’s biconnected components 

for each (Policy1,Policy2) pair  / (Policy2,Policy1) will be checked later 

2.           check_conditional_overlaps(Policy1,Policy2)  / compare it with 

                      others for conditional overlaps between policies                                                        

3.           if check_conditional_overlaps(Policy1,Policy2) == True 

4.                      check_target_overlaps(Policy1, Policy2)  / check the target  

                                 overlaps2 between policies. 

5.                      if check_target_overlaps(Policy1, Policy2) == True 

6.                               check_physical_overlaps(Policyh1,Policy2)  / check 

                                           physical overlaps between policies 

7.                                if check_physical_overlaps(Policyh1,Policy2) == True 

8.                                            print_conflict(Policy1,Policy2) 

9. return 

 

The physical path overlap checking function takes advantage of the biconnected 

components as follows: 
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boolean check_physical _overlaps(Policy1,Policy2) 

1. If  Policy1àPath == “*” or Policy2àPath == “*”  

2.            return true  / “All paths” overlaps with any other path  

3. If  Policy1àPath == Node1 Policy2àPath == Node2  

4.            return check_physical _overlaps1(Node1,Node2)  / Node vs.  

             node 

5. If  Policy1àPath == Node1 Policy2àPath == {A,*,B} 

6.             return  check_physical _overlaps2(Node1,{A,*,B})  / Node vs. 

            wildcard path                       

7. If  Policy1àPath == Node1 Policy2àPath == List 

8.            return check_physical _overlaps3(Node1, List)  / Node vs. list  

           of nodes              

9. If  Policy1àPath == {A,*,B} Policy2àPath == {C,*,D}  

10.             return check_physical _overlaps4({A,*,B}, {C,*,D}) / 

            Wildcard vs. wildcard 

11. If  Policy1àPath == {A,B} Policy2àPath == {C,*,D}  

12.            return check_physical _overlaps5({A,B}, {C,*,D}) / Link vs. 

           wildcard path 

 

The subroutines are as follows: 

 

 boolean check_physical _overlaps1(Node1,Node2) 

1. if Node1 == Node2 

2.            return true 
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3. else 

4.         return false 

 

 boolean check_physical _overlaps2(Node1,{A,*,B}) 

1. if Node1 == A or Node1 == B 

2. for iß1 to all Biconnected Components 

3.           if member ((Node1,A), Biconnected_Comonent(i)) ||  

                               member ((Node1,B), Biconnected_Comonent(i))  / Node1 is in the 

                               same biconnected component as either A or B.  

4.                      return true 

5.           if member((A,B), Biconnected_Component(i)), not member(Node1,     

                            Biconnected_Component(i))  / A and B are in the same biconnected 

                            component that does not contain Node1. 

6.                     return false 

7. return check_sublist(Node1,{A,*,B})  / cannot be handled with previous 

conditions. 

 

   boolean check_physical _overlaps3(Node1, List) 

1. if member(Node1, List) 

2.           return true 

3. else 

4.           return false 
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boolean check_physical _overlaps4({A,*,B}, {C,*,D}) 

1. if A == C, B == D 

2.           return true  / same paths 

3. for iß1 to all Biconnected Components 

4.           if member((A,C), Biconnected_Component(i) ), B == D 

5.                      return true  / Source nodes are in the same 

                                biconnected component and they have the same target node. 

6.           if member((B,D), Biconnected_Component(i)), A == C 

7.                      return true  / Source nodes are the same and 

                                destination nodes are in the same biconnected component. 

8.           if member((A,C), Biconnected_Component(i)) 

9.                     for jß1 to All Biconnected Components, j != i 

10.                                if  member((B,D), Biconnected_Component(j)) 

11.                                return true / Source nodes are in the same 

                                           biconnected component while destination nodes are in 

                                           another one. 

12.           if member((A,B), Biconnected_Component(i)), 

                          not member((C,D), Biconnected_Component(i))  

13.                      return false / Source and destination of one path are 

                                 in the same biconnected component, but not true for the other 

                                 path. 

14.           if member((A,B,C,D), Biconnected_Component(i))  

15.                      limited_search_paths(A,B, Biconnected_Component(i),List1) 

16.                      limited_search_paths(C,D, Biconnected_Component(i),List2) 
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17.                      return check_physical_overlaps(List1,List2) / if all 

                                 nodes are in the same biconnected component, call limited 

                                 search algorithm which uses only the node that are member 

                                 of biconnected component to expand the paths. List1 and 

                                List2 are expanded versions of path definitions. Compare 

                                returned paths. 

18. return check_sublist({A,*,B},{C,*,D}) / if cannot be handled with 

previous conditions. 

 

boolean check_physical _overlaps5({A,B}, {C,*,D}) 

1. If A == C, B == D 

2.           return true 

3. for iß1 to all Biconnected Components 

4.           if member((C,D), Biconnected_Component(i)), not member((A,B), 

                         Biconnected_Component(i))  

5.                       return false  

6.           if member((A,B,C,D), Biconnected_Component(i))  

7.                      limited_search_paths(C,D, Biconnected_Component(i),List1) 

8.                      return check_physical_overlaps({A,B},List1)  

9. return check_sublist({A,B},{C,*,D})  / if cannot be handled with previous 

conditions. 

 

boolean check_sublist(List1,List2) 

1. if sublist(List1,List2)  

2.            return true / If List1 is a sublist of List2, they have a 
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                 overlap. 

 

6.     Removing a Bug 

While comparing user-defined policy paths, another concern is certifying that 

such paths really exist in the particular network.  So the new compiler also checks this. 

But in addition, the previous compiler compares policies for subpaths based on only 

nodes and links.  This means that only policy paths that are defined as a link or node are 

actually compared with other policies but not the ones defined by policy creators as list of 

nodes or the ones using wildcard characters.  As a result of this bug, not all policies were 

compared to each other; so many conflicts could not be detected.  So while improving the 

performance of the PPL compiler, we noticed and removed a bug causing major 

mistakes.  This is illustrated by comparing the compiler result files in Appendix F and 

Appendix G, both the result of the compilation of the same sample file with 40 nodes; the 

new compiler detected all conflicts (Appendix G) that could not be detected by the 

previous compiler (Appendix F). 
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VI. TEST RESULTS 

For all the improvements described in the last section, 52 different Prolog rules 

were written comprising 255 lines of code. 

 

A. THE NEW DEPTH-LIMITED SEARCH ALGORITHM 

It is necessary to choose a depth value which will end the compilation in a 

reasonable time while returning an acceptable number of created paths between two 

nodes. Some experiments were made to choose the optimum depth value.  Experiments 

were repeated 1000 times for the depths of 5 and 10; 500 times for a depth of 15; and 100 

times for the depths of 20 and 25.  Because it takes a long time to get results as the depth 

increases, experiments were repeated fewer number of times for higher depth values. 

For each run two random nodes were selected as path endpoints.  The number of 

detected paths between those two nodes (the number of paths the new search algorithm 

can create for that depth) and how long it took to find those paths were recorded.  Figure 

10 shows the number of returned paths (maximum, minimum and average) as we 

changed the depth parameter.  Depth 20 appears to be a “saturation point” because there 

is little increase in the number of paths when we increase the depth to 25 from 20. 
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Figure 10.  The effects of changing depth in the new path search algorithm to the 

number of paths detected. 

 

 Figure 11 below shows the time spent for finding paths between two random 

nodes as a function of depth value.  The time in obtaining a result dramatically increases 

after depth 15.   For actual data related to Figures 10 and 11, see Appendix B. 
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Figure 11.  Time spent to return detected paths between two nodes. 
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Another issue is the effect of changing the processor speed.  This time the code 

was run under the same conditions (random node selecting and same number of 

repeating), but on three different computers.  The processors of the computers are 

Pentium-III 0.65 gigahertz, Pentium-IV 1.2 gigahertz and Pentium-IV 1.8 gigahertz.  

Figure 12 shows that the processor speed has no effect on the number of paths detected. 

The results on time spent (Figure 13) are encouraging because they show as the depth 

increased, the faster processors yield more benefits.  The actual data related to Figure 12 

and 13 can be found in Appendix C.  
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Figure 12.  Number of returned paths by each processor between two random 

nodes. 
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Figure 13.  Time spent to find results by each processor. 
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B. COMPARING THE NEW COMPILER WITH THE OLD ONE 

We compare the performance of the old and new PPL compilers in Table 3 and 

Figure 14.  The improvement is impressive. 

 

Number of 
Nodes 

Num. of 
Policies 

Compilation Time(seconds) 
using Previous Compiler 

Compilation Time(seconds) 
using Improved Compiler 

10 11 10 2 
30 11 120 3 
40 20 420                 6              
80 20 8  10 
120 20 8  14 

Table 3. Test results with previous and improved PPL compilers. 
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Figure 14.  Comparing the previous and the improved PPL Compiler. 

 

The results proved that the PPL compiler was enhanced enough to satisfy the time 

requirements to be used in real life networks.  Moreover with the bug in the previous 

compiler removed the compiler was enabled to return all conflicts that actually exist 

between policies.  Briefly, the new compiler returns more correct results in a much 

shorter time.  
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C. TEST RESULTS OF MORE DIFFICULT CASES 

To make sure the new compiler is bug-free and works with any topology and with 

any number of wildcards in policy paths, new test files were created with more complex 

policy paths.  First, several paths using the wildcard character were defined on a linear 

topology.  Later, by adding random links, the topology was modified to a mesh.  More 

paths with the wildcard character were added to policies.   The test results can be seen in 

Table 4.  For these experiments, policy paths were created by randomly choosing source 

and destination nodes.  There were 11 defined polices in the 30-node sample file; the 

other files use 20 defined policies.  

 

No. of Nodes 
in the Sample 
Network 

No. of 
Policies 

No. of 
Wildcard 
Paths  

No. of Times Wildcard  
Paths Used in All 
Policies 

Compilation 

Time (Seconds) 

No of Times 
Physical Overlap 
Check Required 

30 (Linear 
Topology) 

11 8 17 3 1830 

30 (Mesh 
Topology) 

11 8 17 8 860 

30 (Mesh 
Topology) 

11 10 19 13 1570 

40 (Linear 
Topology) 

20 11 25 4 2795 

40 (Mesh 
Topology) 

20 11 25 8 2057 

40 (Mesh 
Topology) 

20 17 31 16 4488 

80 (Linear 
Topology) 

20 13 29 7 2726 

80 (Mesh 
Topology) 

20 13 29 105 3597 

80 (Mesh 
Topology) 

20 19 33 145 6354 

120 (Linear 
Topology) 

20 22 39 61 2422 

120 (Mesh 
Topology) 

20 22 39 2789 20210 

120 (Mesh 
Topology) 

20 26 42 3800 11861 

Table 4.  Testing more difficult cases 
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The first column in the table shows the number of nodes of the tested network.  

The second column is the number of wildcard symbols in policy paths.  The third column 

shows the number of paths that uses the wildcard symbol “*” in their declarations. Such 

paths are termed wildcard paths. The third column shows the total number of times that 

wildcard paths are used in all policies. The value is higher because some policies are 

defined for several paths and a wildcard path may be used by multiple policies. For 

example consider the 80-node mesh topology which is presented in Appendix H. There 

are 13 wildcard paths as defined by define path statements.  That value is shown in the 

second column. But many policies in that file are defined on several paths. For example 

Policy1 is defined on paths {n27_n25,n30_n70} and Policy2 is defined on paths 

{n5_n28,n7_n37}.  The fourth column is the compilation time in seconds for that sample 

file.  The fifth column shows the number of times the condition and target items 

overlapped between two policies, and hence the total number of times a physical overlap 

check was needed. 

The table shows that as the number of wildcard path usage increased and as the 

number of the links in the network increased (from linear to mesh topology), the 

compilation time also increased.  This increase is dramatic for large networks, like the 

120-node network. 

Another issue tested was the advantage of exploiting biconnected components in 

making the physical overlap check.  Four situations occur with the improved PPL 

compiler: 

1. The biconnected component property may permit a physical overlap decision 

to be made without a bidirectional path search. 

2. The biconnected component property may permit a search on a reduced 

number of nodes belonging to only one biconnected component. 

3. If the path overlap check has been done before for these policy paths and the 

result cached, we can recall that result. 

4. If none of the above are possible, the full path search algorithm must be used 

on the entire network. 

The results for each case are shown in the table below: 
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No. of Nodes 
in the Sample 
Network 

No of Times 
Physical Overlap 
Check Required 

No. of Times 
Biconnected 
Comp. 
Property Used 

No. of Times 
Bidirectional Path 
Search Done with 
Reduced Network Size 

No. of 
Times 
Cached 
Results Used 

No. of Times 
Bidirectional Path 
Search Done on 
Entire Network 

30 (Linear 
Topology) 

1830 78 0 1746 8 

30 (Mesh 
Topology) 

860 102 1 750 7 

30 (Mesh 
Topology) 

1570 68 1 1493 9 

40 (Linear 
Topology) 

2795 126 0 2669 10 

40 (Mesh 
Topology) 

2057 249 1 1800 7 

40 (Mesh 
Topology) 

4488 145 7 4327 9 

80 (Linear 
Topology) 

2726 202 0 2511 13 

80 (Mesh 
Topology) 

3597 308 2 3276 11 

80 (Mesh 
Topology) 

6354 209 2 6127 16 

120 (Linear 
Topology) 

2422 151 0 2261 10 

120 (Mesh 
Topology) 

20210 478 1 19713 18 

120 (Mesh 
Topology) 

11861 332 2 11505 22 

Table 5. Physical overlap check statistics.  
 

Table 5 shows a dramatic decrease in using the bidirectional path search on the 

full network because of exploiting biconnected components.  This is a big time saving 

especially in bigger networks.  The results of the test can be summarized as follows: 

• An important factor affecting the compilation time of the new compiler is 

the total number of times wildcard paths are used in all policies. This factor gives an 

upper bound on how many times an exponential-complexity search algorithm may have 

to be used.  Exploiting biconnected components reduces the need of using the search 

algorithm but this may not help in some cases as when there is one large biconnected 

component and a few smaller ones.  

• The nature of the network is an even more important factor.  When the 

number of the links is increased, the time to perform a bidirectional search increases 
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rapidly due to its exponential complexity.  Also, topology can matter considerably.  A 

mesh-topology network usually has a large biconnected component instead of several 

similar sized ones, resulting in a much slower search than a less connected topology.  

• We saw positive effects of exploiting biconnected components.  In many 

cases, whether two policy paths overlap or not can be predicted without expanding their 

path representations.   
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VII. CONCLUSION AND FUTURE WORK 

A. CONCLUSION 

Before this thesis the PPL compiler could compile policies for networks with up 

to 40 nodes.  The compilation for larger networks did not end even after days.  This work 

identified and mitigated to a large extent the performance bottleneck of the previous PPL 

compiler.  

The new compiler is very efficient and can return results for networks with 120 

nodes and dozens of policy paths using the wildcard character.  Moreover the improved 

compiler can detect all conflicts, which the previous compiler could not do because of a 

software bug.  

The speed of the new compiler depends on the number of policy paths using the 

wildcard character and the number of nodes in the network. Each time a path with the 

wildcard character is tested against another path for overlap, the compiler may have to 

perform a bidirectional search of all paths between two nodes.  The more nodes in the 

network, the depth of the search has to be larger to find all paths.  

The topology of the network affects the complexity of the path overlap 

determination algorithm in another way.  When the network can be partitioned into 

several biconnected components the algorithm is likely to succeed with no bidirectional 

search of all paths between two nodes.  A mesh network with rich connectivity means 

few biconnected components, making it less likely to avoid a brute-force path search 

when determining if a path with the wildcard character overlaps with another path. 

The test results show that with the improved compiler, PPL can be used for any 

topology of hundreds of nodes, with a reasonable number of policies and a reasonable  

number of policy paths.  The advantages of the PPL system, as listed in Chapter III, can 

be more fully materialized after the improvements made by this work.  
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B. FUTURE WORK 

Because this thesis initially focused on speeding up the PPL compiler, the 

solutions were only developed for the main path representation cases such as {A,*,E}.  

Users may want to declare more complex or more specific paths than the ones used as 

samples in this thesis.  For example users may define a complex path declaration like 

{*,A,B,*,C,*}. It may also be desirable to support a negation operator (~) in path 

specification so that a path declaration ~{*,A,B,*} would represent all paths that do not 

go through nodes A and B in order.  The improved PPL compiler cannot handle those 

path declarations.  One area of future work may be enabling the PPL compiler to deal 

with these kinds of complex path representations.  It must be kept in mind that 

biconnected components may be used to accelerate path overlap determination even with 

complex policy path representations.  Methods minimizing the use of bidirectional search 

of all paths between two nodes in these cases must be developed.  

Other methods may exist to reduce the use of bidirectional path search or limit the 

search space when a search is necessary. For example, it may be possible to utilize the 

information from the <conditions> element of a policy rule (such as a hop count  

constraint) to narrow the bidirectional path search space. Thus, another area of future 

work will be searching more ways to reduce the usage of the bidirectional search 

algorithm or narrow the search space.  Such work should increase the PPL compiler 

performance further.  
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APPENDIX A. IMPORTANT ALGORITHMS FROM THE 
PREVIOUS PPL COMPILER 

STAGE 1 
1. list class{}, condition_path{}, link{}, no_conditions{}, node_label{}, path_links{}, 

path_message{}, path_param{}, policy_action{}, policy_message{}, policy_owner{}, 
policy_path{}, policy_targets{}, target{}, type{}, user{} / lists that are in Prolog 
database 

2. list Policy_Paths{}, Target_lists{}  / user defined lists 
3. string user_implicit_deny, wild 
4. open PPL2.txt  / open the file to place the modified Prolog facts. 
5. paths_in_nodes( &Policy_Paths{} )        output all paths and all the possible  
6. print_policy_list( Policy_Paths{} )          nodes that can be used to create the  

                                                           path   
7. create_paths() 
8. policy_target_list( &Target_lists{} )         create an association between a  
9. print_target_list ( Target_Lists{} )           policy and targets it supports. 
10. print_condition_list() / create a list of conditions and associate them with policies 
11. explicit_nodes() 
12. print_no_conditions() 
13. print_implicit_deny() 
14. print_path_params() 
15. print_users() 
16. print_actions()                                  forward the important Prolog facts for  
17. print_types()                                     Stage2 
18. print_target_all() 
19. print_policy_owner() 
20. print_nodes() 
21. print_links() 
22. print_path_messages() 
23. print_policy_messages() 
24. close PPL2.txt / close the file  

 
      
      //* 
     Given a Policy_Label a list will be returned with the first element being the Label,    

and the second element being the path associated with that label. ex: ['Policy1',['NPS','IETF']]   
     *// 

 
paths_in_nodes( &Policy_Paths{} ) 
 

1. List Expanded_Path{} 
2. for i ß 1 to Length( path_links{} ) 
3.      { Path, Path_list{} } ß Nth ( i, path_links{} )  
4.      for j ß  to Length ( policy_path{} )  
5.            { Policy_Label, Path1{} } ß Nth ( j, policy_path{} ) 
6.            if Path1 = Path 
7.                path_in_nodes ( Path_List{}, &Expanded_Path{} ) 
8.                Append ( Expanded_Path{}, Policy_Paths{} )  
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9. for k ß 1 to Length( link{} ) 
10.      { Path, var1, var2 } ß Nth ( k, link{} )  
11.      for l ß  to Length ( policy_path{} )  
12.            { Policy_Label, Path1{} } ß Nth ( l, policy_path{} ) 
13.            if Path1 = Path 
14.                path_in_nodes ( { Path }, &Expanded_Path{} ) 
15.                Append ( Expanded_Path{}, Policy_Paths{} ) 
16. for m ß 1 to Length( node_label{} ) 
17.      { Path, var } ß Nth ( i, node_label{} )  
18.      for m ß  to Length ( policy_path{} )  
19.            { Policy_Label, Path1{} } ß Nth ( m, policy_path{} ) 
20.            if Path1 = Path 
21.                path_in_nodes ( { Path }, &Expanded_Path{} ) 
22.                Append ( Expanded_Path{}, Policy_Paths{} ) 
23. return 
 

     
     //* 
    Takes a path with link elements, and returns a path with those links expanded into its 

node components: wildcard characters are left untouched. Given: 
['NPS_DARPA','DARPA_SPAWAR'] Returns: ['NPS', 'DARPA', 'SPAWAR']  

    *// 
 
path_in_nodes( list1{}, &Expanded_path{} ) 
 

1. for i ß 1 to Length( link{} ) 
2.     if  Head( list1{} ) = Head( Nth( i, link{} ) ) 
3.         Expanded_Path{} ß Tail( Nth( i, link{} ) 
4.  for j ß 1 to Length( node_label{} ) 
5.     if  Head( list1{} ) = Head( Nth(  j, node_label{} ) ) 
6.         Expanded_Path{} ß Tail( Nth(  j, node_label{} ) 
7. if  Head( list1{} ) = ‘ * ‘ 
8.     if   Lengt( list1{} ) = 1 
9.         Expanded_Path{} ß Head( list1{} ) 
10. for k ß 1 to Length( node_label{} ) 
11.      if  Head( list1{} ) = Head( Nth( k, node_label{} ) ) 
12.          list tail{} ß Tail( list1{} )  
13.          list path{}  
14.          path_in_nodes( tail{}, &path{} ) 
15.          Head( Expanded_Path{} ) ß Head( list1{} ) 
16.          Tail( Expanded_Path{} ) ß path{} 
17.  if  Head( list1{} ) = ‘ * ‘ 
18.      list tail{} ß Tail( list1{} )  
19.      list path{}  
20.      path_in_nodes( tail{}, &path{} ) 
21.      Head( Expanded_Path{} ) ß Head( list1{} ) 
22.      Tail( Expanded_Path{} ) ß path{} 
23.  return  
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//* 
     Generates the paths required to detect policy conflicts. If no wild card characters were 

used: then print just the paths explicitly listed and all the links that create the network else print 
out all possible paths through the network so that wild card matching can be done. 

     *// 
 
create_paths() 
 

1. list Nodes{} 
2. if wild = ‘ no ‘ 
3.     explicit_paths{} 
4.     explicit_links{}  
5. if wild = ‘ yes ‘  
6.     for i ß 1 to Length( node_label{} )  
7.          push ( Nth ( i, node_label{} ),  Nodes{} ) 
8.     create_paths( Nodes{} ) 
9. return 

 
 

//* 
     Return all possible paths incrementally by taking each node pair in the network and 

generating all possible paths between those to nodes. 
     *// 

 
create_paths( Nodes{} ) 
 

1. while Length( Nodes{} ) > 0 
2.     node1 ß Head( Nodes{} ) 
3.     node2 ß Nth ( 2, Nodes{} ) 
4.     list tail{} ß Rest ( 2, Nodes{} ) 
5.     create_paths_helper ( { node1, node2, tail{} } ) 
6.     create_paths( node2, tail{} ) 
7. return 

 
 

//* 
     Find all possible paths between two nodes in the network 
     *// 

 
create_pats_helper( { node1, node2, tail{} } ) 
 

1. all_paths( node1, node2 ) 
2. all_paths( node2, node1 ) 
3. node2 ß Head( tail{} ) 
4. tail{} ß Tail( tail{} ) 
5. create_paths_helper( { node1, node2, tail{} } ) 
6. return 
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//*         

     Helper function to "all_paths". Determines if two nodes in the network are directly 
connected    

     *// 
 

path1( node1, node2{}, &Paths{} ) 
 

1. list path{} 
2. path{} ß node2{} 
3. if  node1 = Head( path{} ) 
4.     Paths{} ß path{} 
5. else while adjacent( X, Head( path{} ) )  
6.     if   member( X, path{} ) = false 
7.         push( X, path{} ) 
8.         path1( node1, path{}, &Paths{} ) 
9. return 

 
 
     //* 
     True if there is an link from X->Y or Y->X 
     *// 
 
adjacent( X, y ) 

 
1. boolean helper = true 
2. integer i = 1   
3. while helper = true and i =< Length ( link{} ) 
4.     { nodeX, nodeY } ß Nth( i, link{} ) 
5.     if nodeY = y 
6.         if  nodeX is not assigned before 
7.            X ß nodeX 
8.            helper = false 
9.     i = i + 1  
10.  return X 

 
 
     //* 
     Remove duplicates from a list 
    *// 
     remove_dups( list1{}, &List2{} )  
 

1. head ß Head( list1{} ) 
2. list tail ß Tail ( list1{} )  
3. while Legnth( list1{} ) > 0 
4.      if    Member( head, tail{} ) = true 
5.           remove_dups( tail{}, &List2{} ) 
6.      else 
7.           push( head, List2{} ) 
8.           remove_dups( tail{}, &List2{} ) 
9. return 
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     //* 
     Create an association between a policy and the targets it supports. 
     *// 
 
     policy_target_list( &Target_List{} ) 
 

1. list targets{}, target_list{}, unique_target_list{}, results{} 
2. for i ß 1 to Length( policy_targets{} ) 
3.      Label ß Head( i, policy_targets{} ) 
4.      targets{} ß Tail( i, policy_targets{} ) 
5.      create_target_list( Label, targets{}, &target_list{} ) 
6.      remove_dups( target_list{}, &unique_target_list{} ) 
7.      flatten( unique_target_list{}, &results{} ) 
8.      Tail( Target_list{} ) ß results{} 
9.      Head( Target_list ) ß Label 
10. return 

 
 
 

STAGE 2 
1. link{}, no_conditions{}, node_label{}, path{}, path_message{}, path_param{}, 

policy_action{}, policy_condition{}, policy_message{}, policy_owner{}, policy_path{}, 
policy_targets{}, target{}, type{}, user{} / lists that are in Prolog database 

2. string user_implicit_deny, wild 
3. open PPL3.txt  / open the file to place the modified Prolog facts.  

                                                   From all possible paths in the network, print 
4.  all_policy_paths()                            only those associated with policies after the 

                                                   expansion of all wildcard characters. 
  

5. print_no_conditions() 
6. print_implicit_deny() 
7. print_path_params() 
8. print_users() 
9. print_actions()                              
10. print_types()                                       forward the important Prolog facts 
11. print_target_all()                                for Stage3 
12. print_policy_owner() 
13. print_nodes() 
14. print_links() 
15. print_path_messages() 
16. print_policy_messages() 
17. close PPL3.txt / close the file  

 
 
     //* 
     Print all paths associated with policies 
     *// 
 
     all_policy_paths() 
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1. list Policy_Paths{}, Policy_Path{} 
2. for i ß 1 to Length( policy_path{} ) 
3.      { pol_label, pol_path{} ) ß Nth( i, policy_path{} ) 
4.      for j ß 1 to Length( path{} ) 
5.           pos_path{} ß Nth( j, path{} ) 
6.           policy_paths( pol_label, pol_path{}, pos_path{}, &Policy_Path{} ) 
7.           Append( Policy_Path{}, Policy_Paths{} ) 
8. print_path_list( Policy_Paths{} ) 
9. print_conditions( Policy_Paths{} ) 
10. return 

 
 
      
     //* 
     Match wild card paths, with their expanded paths 
     *// 
      
     policy_paths( pol_label, pol_path{}, pos_path{}, &Policy_Path{} ) 
 

1. if   match( pol_path{}, pos_path{} )  
2.      Head( Policy_Path{} ) ß pol_label 
3.      Tail( Policy_Path{} ) ß pos_path{} 
4. return 

 
 
     //* 
     Does a given list with or without wildcard characters match another one? 
     *// 
      
     Boolean match( pol_path{}, pos_path{} ) 
 

1. boolean returnValue 
2. if   Head( pol_path{} ) = Head( pos_path{} ) 
3.      match( Tail( pol_path{} ), Tail( pos_path{} ) ) 
4. if   Head( pol_path{} ) = ‘ * ‘ and Head( pos_path{} ) = ‘ * ‘ 
5.      match( Rest( 2, pol_path{} ),  pos_path{} ) 
6. if   Head( pol_path{} ) = ‘ * ‘ and Nth( 2, pol_path{} ) =  Head( pos_path{} ) 
7.      match( Tail( pol_path{} ), Tail( pos_path{} ) ) 
8. if   Head( pol_path{} ) = Head( pos_path{} ) 
9.      match( Tail( pol_path{} ), Tail( pos_path{} ) ) 
10. if   pol_path{} = { Ø } and  pos_path{} = { Ø } 
11.      returnValue = true 
12. if   Length( pol_path{} ) = 0 and  pos_path{} = { Ø } 
13.      returnValue = false 
14. if   pol_path{}  = ‘ * ‘ 
15.      returnValue = true 
16. return returnValue 
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STAGE 3 
1. condition{}, link{}, no_conditions{}, node_label{}, path{}, path_message{}, 

path_param{}, policy_action{}, policy_message{}, policy_owner{},  target{}, type{}, 
user{} / lists that are in Prolog database 

2. list subpaths{}, permit_conflicts{} / user defined lists 
3. string user_implicit_deny 
4. open scan_out.txt  / open the file to place the modified Prolog facts.  
5. find_all_subpaths( &subpaths{} ) 
6. permit_conflicts( subpaths{}, &permit_conflicts{} ) 
7. print_unresolved_conflict_list( permit_conflicts{} ) 
8. print_resolved_conflict_list( permit_conflicts{} ) 
9. print_message_conflict_list() 
10. close scan_out.txt / close the file  

 
 
     //* 
     Return set of all policies that contain overlapping paths. 
     *// 
 
     find_subpaths( &subpaths{} ) 
 

1. for i ß 1 to Length( path{} ) 
2.      { policy1, path1{}, target1 } ß Nth( i, path{} ) 
3.      for j ß 1 to Length( link{} ) 
4.           { var, from, to } ß Nth( j, link{} ) 
5.           if   { from, to } = path1{} 
6.                for k ß 1 to Length( path{} ) 
7.                     { policy2, path2{}, target2 } ß Nth( k, path{} ) 
8.                     if    sublist( path1{}, path2{} ) = true 
9.                           Push( { policy1, path1{}, target1, policy2, path2{}, 

                                          target2 },  subpaths{} ) 
10. for l ß 1 to Length( path{} ) 
11.      { policy1, path1{}, target1 } ß Nth( l, path{} ) 
12.      for m ß 1 to Length( node_label{} ) 
13.           { label, var } ß Nth( m, node_label{} ) 
14.           if   {label} = path1{} 
15.                for n ß 1 to Length( path{} ) 
16.                     { policy2, path2{}, target2 } ß Nth( n, path{} ) 
17.                     if    sublist( path1{}, path2{} ) = true 
18.                           Push( { policy1, path1{}, target1, policy2, path2{},  

                                          target2},  subpaths{} ) 
19. return 
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     //* 
     Checks whether  list1{} a sublist of  list2{} 
     *// 
 
     sublist( list1{}, list2{} ) 
 

1. while Length( list2{} ) > 0 
2.      returnValue = true 
3.      for i ß 1 to Length( list1{} ) 
4.          if   Nth( i, list1{} ) != Nth( i, list2{} ) 
5.               retutnValue = false 
6.      sublist( list1{}, Tail( list2{} ) ) 
7. return returnValue 

 
 
     //* 
     Take a list of policy pairs that contain overlapping paths. Check each policy pair for 

overlapping conditions. If the conditions do overlap, then check the classes of traffic that are 
permitted on each to determine  if a conflict exists. 

     *// 
 
     permit_conflicts( subpaths{}, &permit_conflicts{} ) 
 

1. list no_overlap{}, conflicts{} 
2. for i ß 1 to Length( subpaths{} ) 
3.      { policy1, path1{}, target1{}, policy2, path2{}, target2{} } ß Nth( i, 

                subpaths{} )  
4.      list tail{} ß Tail( subpaths{} ) 
5.      if   policy1 != policy2 
6.           conditional_overlap( policy1, policy2, var{}, &no_overlap{} ) 
7.           if   no_overlap{} != { Ø } 
8.                conflict_permit_targets( policy1, policy2, target2{},  target1{},  

                                                           &conflicts{} ) 
9.                if   conflicts{} != { Ø } 
10.                     Push( { policy1, path1{}, target1{}, policy2, path2{}, 

                                      target2{}, conflicts{} }, permit_conflicts{} }       
11.                     permit_conflicts( tail{}, &permit_conflicts{} ) 
12.                for j ß 1 to Length( target{} ) 
13.                     { policyJ, targetJ } ß Nth( j, target{} )  
14.                     if   policyJ = policy1 and targetJ{} = ‘ permit_all ‘ 
15.                          for k ß 1 to Length( policy_action{} ) 
16.                               { policyK, actionK } ß Nth( k, policy_action {} )  
17.                               if   policyK = policy2 and actionK = ‘ deny ‘  
18.                                    value ß ‘ permit_all ‘ 
19.                                    Push( { policy1, path1{}, target1{}, policy2, path2{},   

                                                target2{}, { policy1, value } }, permit_conflicts{} }       
20.                                   permit_conflicts( tail{}, &permit_conflicts{} ) 
21.                     if   policyJ = policy1 and targetJ{} = ‘ deny_all ‘ 
22.                          for l ß 1 to Length( policy_action{} ) 
23.                               { policyL, actionL } ß Nth( l, policy_action{} )  
24.                               if   policL = policy2 and actionK = ‘ permit ‘  
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25.                                    value ß ‘ deny_all ‘ 
26.                                    Push( { policy1, path1{}, target1{}, policy2, path2{},   

                                                target2{}, { policy1, value } }, permit_conflicts{} }       
27.                                   permit_conflicts( tail{}, &permit_conflicts{} ) 
28.                for m ß 1 to Length( target{} ) 
29.                     { policyM, targetM } ß Nth( m, target{} )  
30.                     if   policyM = policy2 and targetM{} = ‘ permit_all ‘ 
31.                          for n ß 1 to Length( policy_action{} ) 
32.                               { policyN, actionN } ß Nth( n, policy_action {} )  
33.                               if   policyN = policy1 and actionN = ‘ deny ‘  
34.                                    value ß ‘ permit_all ‘ 
35.                                    Push( { policy1, path1{}, target1{}, policy2, path2{},   

                                                target2{}, { policy2, value } }, permit_conflicts{} }       
36.                                   permit_conflicts( tail{}, &permit_conflicts{} ) 
37.                     if   policyJ = policy2 and targetJ{} = ‘ deny_all ‘ 
38.                          for o ß 1 to Length( policy_action{} ) 
39.                               { policyO, actionO } ß Nth( o, policy_action{} )  
40.                               if   policO = policy1 and actionO = ‘ permit ‘  
41.                                    value ß ‘ deny_all ‘ 
42.                                    Push( { policy1, path1{}, target1{}, policy2, path2{},   

                                                target2{}, { policy2, value } }, permit_conflicts{} }       
43.                                   permit_conflicts( tail{}, &permit_conflicts{} ) 
44.                else if conflicts{} = { Ø } 
45.                     permit_conflicts( tail{}, &permit_conflicts{} ) 
46.      if   policy1 = policy2 
47.           permit_conflicts( tail{}, &permit_conflicts{} ) 
48.      if   subpaths{} = { Ø } 
49.           permit_conflicts{} ß { Ø } 
50. return 
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APPENDIX B. TEST RESULTS OF BIDIRECTIONAL SEARCH 
ALGORITHM WITH DIFFERENT DEPTH VALUES 

 

 
 

NUMBER OF DETECTED PATHS 

AV. MAX MIN  DEPTH 

1.559727 7 0  5 

12.92776 46 1  10 

41.86842 114 1  15 

48.85714 98 1  20 

50.7722 100 1  25 
Table 6. Number of detected paths for each depth value  

 
 
 

Table 7. Time spent to detect paths for each depth value  
 
 
 
 
 
 
 

 

TIME FOR CREATING PATHS BETWEEN TWO NODES 

COMPUTATION(1/SEC)  TIME(SEC) 

AV. MAX. MIN. DEPTH AV MAX. MIN. 

17.6597 4.545455 100 5 0.056626 0.22 0.01 

0.677684 0.185874 4.545455 10 1.475614 5.38 0.22 

0.022109 0.007185 0.114416 15 45.23125 139.18 0.22 

0.001598 6.91E-04 0.006424 20 625.8659 1448.16 155.66     

3.73E-04 1.73E-04 0.001933 25 2682.29 5772.29 517.264 

 
(RESULTS FOR 120-NODE NETWORK) 
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APPENDIX C. TEST RESULTS OF BIDIRECTIONAL SEARCH 
ALGORITHM WITH DIFFERENT PROCESSOR SPEEDS 

 

 
 
 

AVARAGE DETECTED PATHS 

P3-0.65 P4-1.5 P4-1.8  DEPTH 

1.559727 1.559006 1.548117  5 

12.92776 12.97143 12.75  10 

41.86842 43.98621 40.35739  15 

48.85714 51.9635 51.57463  20 
Table 8. Average path detected for each processor with different depths. 
 
 

Table 9. Time spent to detect paths with each processor. 
 
 
 
 
 
 
 
 

TIME FOR PATH DETECTION BETWEEN TWO NODES 

COMPUTATION(1/SEC)  TIME(SEC) 

P3-0.65 P4-1.5 P4-1.8  DEPTH  P3 P4-1.5 P4-1.8 

17.6597 27.06539 32.2318  5  0.056626 0.036948 0.031021 

0.677684 1.072781 1.425857  10  1.475614 0.932157 0.701333 

0.022109 0.031674 0.045678  15  45.23125 31.57174 21.89241 

0.001598 0.002468 0.0035  20  625.8659 405.1912 285.7387 

 
(RESULTS FOR 120-NODE NETWORK) 
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APPENDIX D. PROLOG CONFLICT DETECTION AND 
RESOLUTION CODE OF THE IMPROVED PPL COMPILER 

% Stage1 is the first step in determining policy conflicts. 
% Steps:  * Open "ppl2.txt" file for policy conflict information 
%   * Separate network to its biconnected components, and 
%           label each biconnected component.  
%   * Print the association between policy labels and 
%     policy targets. 
%   * Print the association between policy labels and 
%     policy conditions. 
%   * Copy all other necessary facts from stage one to  
%     the file that will be used in stage two. 
%   * Close the output file 
% 
% Authors: Neil ROWE, Gary STONE, Ahmet GUVEN 
% 
stage1:-  
 % 
 % Open the file ppl2.txt to place the modified Prolog facts 
 % to be used in stage two. 
 % 
 open('ppl2.txt',write,output), 
 set_output(output), 
 
         % Divide network to its biconnected components by finding 
            % articulation points. 
         % 
         artics,            
 
 % 
 % Output paths & all the possible nodes that can be used 
 % to create the path. 
 % 
 setof(Policy_Path,paths_in_nodes(Policy_Path),Policy_Paths), 
        not(print_policy_list(Policy_Paths)), 
 
 % 
 % Create an association between a policy and the targets 
 % it supports. 
 %  
 setof(Target_List,policy_target_list(Target_List),Target_Lists), 
 not(print_target_list(Target_Lists)), 
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 % 
 % Create a list of conditions and associate them with policies 
 % 
 not(print_condition_list), 
 
 % 
 % Forward the facts of users, bandwidth, no_conditions, actions and types 
 % to the file for stage two. 
 %  
 not(print_no_conditions), 
 print_implicit_deny, 
 not(print_path_params), 
 not(print_users), 
 not(print_actions), 
 not(print_types), 
 not(print_target_all), 
 not(print_policy_owner), 
 not(print_nodes), 
 not(print_links), 
 not(print_path_messages), 
 not(print_policy_messages), 
  
 % 
 % Close the output file 
 % 
 set_output(user_output), 
 close(output), 
 write('Stage 1 complete'),nl,nl. 
 
 
%========================================================
% This rule helps finding articulation points in the network. Calls the main  
% rule to find articulation points and biconnected components. After biconnected 
% components found, it forwards the marked biconnected components as a list 
% to the second stage. 
% 
:- dynamic articulation/1, nodenum/1, low/2. 
:- style_check(-singleton). 
:- unknown(_, fail). 
 
artics :- retractall(node(_,_,_)), retractall(low(_,_)), 
 retractall(bic_list(_,_)), 
   retractall(articulation(_)),retractall(stack(_)),  
 link(_,Start,_), !, retractall(nodenum(_)),  
 assertz(nodenum(0)),retractall(counter(_)),assertz(counter(0)), 
   assertz(stack([])), dfs(Start,0),artics(Start,[]),!,  
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 listing(bic_list),nl. 
 
 
%========================================================= 
% Helps to find articulation points and biconnected components. 
% visits the nodes by Depth First Search and assigns each node 
% a Depth First Search Number. 
% 
dfs(Node,Back) :- nodenum(K), retract(nodenum(K)), Kp1 is K+1, 
   assertz(nodenum(Kp1)), assertz(node(Node,Back,Kp1)), 
   xlink(Node,Node2), not node(Node2,_,_), dfs(Node2,Node), fail. 
 
dfs(_,_). 
 
%========================================================= 
% This is the main rule to find articulation points and biconnected 
% components. While finding articulation points, visited nodes are  
% pushed in stack. When the articulation point is found, the nodes  
% in the stack are labeled as its biconnected components. 
% 
artics(Node,Stack) :- node(Node2,Node,_),push1(Node),push1(Node2), 
  artics(Node2,Stack1),fail. 
 
artics(Node,Stack) :- node(Node,_,Num), 
    nice_bagof(Num2,backward_xlink_num(Node,Num2),NL2), 
    nice_bagof(Num3,child_low(Node,Num3),NL3),  
    append([Num|NL2],NL3,NL), minlist(NL,Low), 
    assertz(low(Node,Low)),ifthen((node(Node,Back,_), 
 node(Back,_,Num1),low(Node,Low), Low >= Num1), 
 print_all(Back)). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Checks whether nodes are connected by a link. 
% 
xlink(Node1,Node2) :- link(_,Node1,Node2); link(_,Node2,Node1). 
 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components.  
% 
backward_xlink_num(Node,Num) :- xlink(Node,Node2), 
   not node(Node,Node2,_), not node(Node2,Node,_),  
 node(Node2,_,Num). 
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%========================================================= 
% Helper function to find articulation points and biconnected 
% components.  
% 
child_low(Node,Low) :- node(Node2,Node,_), low(Node2,Low). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components.  
% 
nice_bagof(A,B,C) :- bagof(A,B,C), !. 
 
nice_bagof(_,_,[]). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components.  
% 
minlist([X],X) :- !. 
 
minlist([X|L],M) :- minlist(L,M), M<X, !. 
 
minlist([X|_],X). 
 
%========================================================= 
% This is the main rule to list the biconnected components. 
% Calls a subroutine to deal with special cases of  
% biconnected components and articulation points. 
% 
print_all(Back):- retractall(counter(_)),assertz(counter(0)), 
         assertz(articulation(Back)),list_and_print(Back),!. 
 
 
%========================================================= 
% This rule first removes the duplicates in the stack that visited nodes 
% are collected. Then calls another rule checking whether articulation point 
% should be included in the biconnected components or not. 
% 
list_and_print(Back):- stack(New_Stack), 
 reverse_and_remove_dups(New_Stack, Biconnected_Components), 
         check_bic(Back,Biconnected_Components,New_Biconnected), 
 print_stack(Back,New_Biconnected, []). 
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%========================================================= 
% Removes nicely the duplicates in the stack where visited nodes are  
% collected.  
% 
reverse_and_remove_dups(List1,List2):-reverse(List1,List3), 
 remove_dups(List3,List4),reverse(List4,List2). 
 
%========================================================= 
% This rule decides that whether the articulation point must be included 
% to biconnected components or not. If it should not, it romeves it from the 
% stack. 
% 
check_bic(Back,Biconnected_Components,New_Biconnected):- 
 nth1(1, Biconnected_Components, Node1), 
            nth1(2, Biconnected_Components, Node2),stack(Biconnecteds), 
 reverse_and_remove_dups(Biconnecteds, Biconnected), 

ifthenelse(Node2=@=Back,          
(ifthenelse((articulation(Node1),used(Node1)), 

            (pop(Biconnected, Biconnec),pop1(Biconnec), 
 stack(Bicon),New_Biconnected=Bicon), 
            New_Biconnected= Biconnected)),New_Biconnected= Biconnected). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. After the decision made about the articulation point, 
% the biconnected components are listed.   
% 
print_stack(Node,[Node|Rest],Storing_List):-counter(K), 
 ifthenelse( (not K=@=1,not K=@=0),(In_List = [Node|Storing_List],  
 assertz(bic_list(Node,In_List))), 
        assertz(bic_list(Node,Storing_List))), 
         retractall(counter(_)),assertz(counter(0)).  
 
print_stack(Node,[Head|Rest],Storing_List):-not Node=@=Head,  
 counter(K), retract(counter(K)), Kp1 is K+1, assertz(counter(Kp1)), 
        pop1(Rest),print_stack(Node,Rest,[Head|Storing_List]). 
 
print_stack(Node,[Head|Rest],Storing_List). 
 
%========================================================= 
% This rule helps deciding whether the articulation point must be included 
% to biconnected components or not.  
% 
used(Node):-bic_list(_,List), member(Node,List),!. 
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%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Pops an element from the stack. 
% 
pop([Head_Stack|Tail_Stack], New_Stack):- New_Stack=Tail_Stack. 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Pushs an element to the stack. 
% 
push(Element,Stack, New_Stack):- New_Stack=[Element|Stack]. 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Dynamic Pop. Deletes the old list and asserts the 
% popped list. 
% 
pop1(Rest):- retract(stack(S)),assertz(stack(Rest)). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Dynamic Push. Deletes the old list and asserts the  
% pushed list. 
% 
push1(Element):- retract(stack(S)),New_Stack=[Element|S],  
 assertz(stack(New_Stack)). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Represents If-Then in Prolog 
% 
ifthen(P,Q):-call(P),!,call(Q). 
 
ifthen(_,_). 
 
%========================================================= 
% Helper function to find articulation points and biconnected 
% components. Represents If-Then-Else in Prolog 
% 
ifthenelse(P,Q,R):-call(P),!,call(Q). 
 
ifthenelse(P,Q,R):-call(R). 
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%========================================================= 
% Prints all paths explicitly listed by the user 
% 
explicit_paths:- setof(Path, path_links(_, Path), Paths), 
 print_path_list(Paths),fail. 
 
%========================================================= 
% Prints all possible links in the network 
% 
explicit_links:- findall(Link, link(Link,_,_), Links),!, 
 remove_dups(Links, Links_nodup),!, 
 print_link_list(Links_nodup),!,fail. 
 
%========================================================= 
% Prints all the nodes in the network 
% 
explicit_nodes:- setof(Node, node_label(Node,_), Nodes), 
 print_node_list(Nodes),fail. 
 
%========================================================= 
% Prints out the paths associated with each policy 
% 
paths:- setof(Path,paths_in_nodes(Path),Paths), 
 qsort(Paths,Sorted), 
        not(print_list(Sorted)). 
 
%========================================================= 
% Prints out a node list nicely formatted 
% 
write_path([]):- write(']'). 
 
write_path([X|[]]):- term_to_atom(X,X_atom), 
 write(X_atom), 
 write(']'),!,true. 
 
write_path([X|Tail]):- term_to_atom(X,X_atom), 
 write(X_atom), 
 write(','), 
 write_path(Tail). 
 
%========================================================= 
% Prints out a path represented as a list of nodes 
% 
print_node_list([]):- fail. 
 
print_node_list([Link|Tail]):- 
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 node_label(Link,_), 
 write('path(['), 
  term_to_atom(Link,Link_atom), 
 write(Link_atom), 
 write(']).'),nl, 
 print_node_list(Tail),fail. 
 
%========================================================= 
% Prints out all the links in the network 
% nicely formatted. 
% 
print_link_list([]):- fail. 
 
print_link_list([Link|Tail]):- 
 link(Link,Src,Dst),!, 
 term_to_atom(Src,Src_atom), 
 term_to_atom(Dst,Dst_atom), 
 write('path(['), 
 write(Src_atom), 
 write(','), 
 write(Dst_atom), 
 write(']).'),nl, 
 write('path(['), 
 write(Dst_atom), 
 write(','), 
 write(Src_atom), 
 write(']).'),nl, 
 print_link_list(Tail),!,fail. 
 
%========================================================= 
% print_path_list: 
% Outputs a list of lists, where each 
% list is on a line by itself and 
% all the atoms are quoted. 
 
print_path_list([]):- fail. 
 
print_path_list([Path | Tail]) :- 
  not(eq1(Path)), 
  write('path(['), 
  write_path(Path), 
  write(').'), nl, print_path_list(Tail). 
 
print_path_list([[X|Y] | Tail]) :- 
  eq1([X|Y]), 
  print_path_list(Tail). 
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print_path_list([[X|Y] | Tail]) :- 
  eq1([X|Y]), 
  node_label(X,_), 
  write('path(['), 
  term_to_atom(X,X_atom), 
  write(X_atom), 
  write(']).'),nl, 
  print_path_list(Tail). 
 
%========================================================= 
% print_policy_list: 
% Outputs nicely for each policy the paths 
% associated with the that policy 
% 
print_policy_list([]):- fail. 
print_policy_list([[Label|[Path]] | Tail]) :- 
  write('policy_path('), 
  term_to_atom(Label,Label_atom), 
  write(Label_atom), 
  write(',['), 
  write_path(Path), 
  write(').'), nl, print_policy_list(Tail). 
 
%========================================================= 
% Print out a list of targets associated with a policy 
% 
write_target_path([X|[]]):- term_to_atom(X,X_atom), 
 write(X_atom),!,true. 
 
write_target_path([X|Tail]):- term_to_atom(X,X_atom), 
 write(X_atom), 
 write(','), 
 write_target_path(Tail). 
 
%========================================================= 
% Prints out the association between a policy 
% and its targets 
% 
print_target_list([[Label|Targets] | Tail]) :- 
 write('policy_target('), 
 term_to_atom(Label,Label_atom), 
 write(Label_atom), 
 write(','), 
 write_target_path(Targets), 
 write(').'), nl, 
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 print_target_list(Tail). 
 
%========================================================= 
% Given a Policy_Label a list will be returned 
% with the first element being the Label, and 
% the second element being the path associated 
% with that label 
% ex: ['Policy1',['NPS','IETF']] 
%  
paths_in_nodes([Policy_Label|[Expanded_Path]]):- 
 path_links(Path,Path_List), 
 policy_path(Policy_Label,Path), 
 path_in_nodes(Path_List,Expanded_Path). 
 
paths_in_nodes([Policy_Label|[Expanded_Path]]):- 
 link(Path,_,_), 
 policy_path(Policy_Label,Path), 
 path_in_nodes([Path],Expanded_Path). 
 
paths_in_nodes([Policy_Label|[Expanded_Path]]):- 
 node_label(Path,_), 
 policy_path(Policy_Label,Path), 
 path_in_nodes([Path],Expanded_Path). 
 
%========================================================= 
% Takes a path with link elements, and returns a path 
% with those links expanded into its node 
% components: wildcard characters are left 
% untouched. 
% 
% Given: ['NPS_DARPA','DARPA_SPAWAR'] 
% Returns: ['NPS', 'DARPA', 'SPAWAR']  
% 
path_in_nodes([X],[N1,N2]):- link(X,N1,N2). 
 
path_in_nodes([X],[X]):- node_label(X,_). 
 
path_in_nodes([X],[X]):- X = '*'. 
 
path_in_nodes([X|Tail],[X|Path]):- 
 node_label(X,_), 
 path_in_nodes(Tail,Path). 
 
path_in_nodes([X|Tail],[X|Path]):- 
 X = '*', 
 path_in_nodes(Tail,Path). 
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%========================================================= 
%Prints a list.  
% 
print_list([]):- fail. 
 
print_list([X | Tail]) :- write(X), nl, print_list(Tail). 
 
%========================================================= 
% Uses quicksort to sort a list of lists by the 
% number of elements in each list 
qsort( [], []). 
 
qsort([X | Tail], Sorted) :- 
 split( X, Tail, Small, Big), 
 qsort( Small, SortedSmall), 
 qsort( Big, SortedBig), 
 conc( SortedSmall, [X | SortedBig], Sorted). 
 
%========================================================= 
% Helper function to qsort, splits one list 
% into two parts 
% 
split( _, [], [], []). 
 
split( X, [Y | Tail], [Y | Small], Big) :- 
 gt( X, Y),!, 
 split(X, Tail, Small, Big). 
 
split(X, [Y | Tail], Small, [Y | Big]) :- 
 split(X, Tail, Small, Big). 
 
%========================================================= 
% Is X is greater than Y 
% 
gt(X, Y) :- length(X, Xlen) , length(Y, Ylen), Xlen > Ylen. 
 
%========================================================= 
% Returns the first element of a list 
% 
first([],[]). 
 
first( X, [X | _ ]). 
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%========================================================= 
% Given list of traffic classes, expand list 
% by assigning action and operation, to  
% each class in the list. 
% 
expand_value_list(_,Action,Class,Op,List,[Expanded_List]):- 
 expand_list(Action,Class,Op,List,Expanded_List). 
 
%========================================================= 
% Helper to "expand_value_list" 
% Assign action, and opertion to each value 
% defined for the traffic class. 
% 
expand_list(_,_,_,[],[]). 
 
expand_list(Action,Class,Op,[X|Tail],[Action,Class,Op,X|Results]):- 
 expand_list(Action,Class,Op,Tail,Results). 
 
%========================================================= 
% Removes duplicates from a list 
% 
remove_dups([],[]). 
 
remove_dups([Head|Tail],List):- 
 member(Head,Tail), 
 remove_dups(Tail,List). 
 
remove_dups([Head|Tail],[Head|List]):- 
 not(member(Head,Tail)), 
 remove_dups(Tail,List). 
 
%========================================================= 
% Creates a list of targets assocatied with a policy 
% 
policy_target_list([Label|[Results]]):- 
 policy_targets(Label,Targets), 
 create_target_list(Label,Targets,Target_list), 
 remove_dups(Target_list,Unique_Target_List), 
 flatten(Unique_Target_List, Results). 
 
%========================================================= 
% Given a label to identify a policy, creates 
% a list of target traffic classes that the 
% policy applies to. 
% 
create_target_list(_,[],[]). 
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create_target_list(Label,[_,'!=',_|Tail],Results_of_Tail):- 
 policy_action(Label,'deny'), 
 create_target_list(Label,Tail,Results_of_Tail).  
 
create_target_list(Label,[_,'*',_|Tail],Results_of_Tail):- 
 policy_action(Label,_), 
 create_target_list(Label,Tail,Results_of_Tail).  
 
create_target_list(Label,[Class,'==',Target_List|Tail], 
 [[Results_of_expand]|Results_of_Tail]):- 
 policy_action(Label,Action), 
 remove_dups(Target_List, Unique_Target_List), 
 expand_value_list(Label,Action,Class,'==', 
 Unique_Target_List,Results_of_expand), 
 create_target_list(Label,Tail,Results_of_Tail). 
 
%========================================================= 
% Creates a list of conditions that must be met 
% in order for the policy to be executed. 
% 
list_of_conditions(Policy,_,[Policy,permit,Attribute,Op,Value]):- 
 condition_path(Policy,Attribute,Op,Value), 
        not(Op = '!='), 
 not(type(Attribute,_,_)). 
 
list_of_conditions(Policy,_,[Policy,permit,Attribute,'!=',Value]):- 
 condition_path(Policy,Attribute,'!=',Value), 
 not(type(Attribute,_,_)). 
  
%========================================================= 
% Creates a list conditions that are composed 
% of user defined types. 
% 
list_of_type_conditions(Policy,_,[Policy,permit,Type,'==',Value]):- 
 condition_path(Policy,Type,'==',Value). 
 
list_of_type_conditions(Policy,_,[Policy,permit,Type,'==',Type_Element]):- 
 condition_path(Policy,Type,'!=',_), 
 type(Type,Type_Element,_), 
 setof(Values,condition_path(Policy,Type,'!=',Values),Value_Set), 
 not(member(Type_Element,Value_Set)). 
 
list_of_type_conditions(Policy,_,[Policy,permit,Type,'==',Element2]):- 
 condition_path(Policy,Type,'<=',Element), 
 type(Type,Element,Value), 
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 type(Type,Element2,Value2), 
 Value2 =< Value. 
 
list_of_type_conditions(Policy,_,[Policy,permit,Type,'==',Element2]):- 
 condition_path(Policy,Type,'>=',Element), 
 type(Type,Element,Value), 
 type(Type,Element2,Value2), 
 Value2 >= Value. 
  
%========================================================= 
% Prints the conditions that must be meet to 
% execute the policy 
% 
output_conditions([]):- fail. 
 
output_conditions([[Policy,Action,Attribute,Operator,Value]|Tail]):- 
 not(Attribute = 'BW'), 
 write('policy_condition('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 write(Action), 
 write(','), 
 term_to_atom(Attribute,A_Attribute),write(A_Attribute), 
 write(','), 
 term_to_atom(Operator,A_Operator),write(A_Operator), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_conditions(Tail). 
 
output_conditions([[Policy,Action,Attribute,Operator,Value]|Tail]):- 
 Attribute = 'BW', 
 write('policy_cond ition('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 write(Action), 
 write(','), 
 term_to_atom(Attribute,A_Attribute),write(A_Attribute), 
 write(','), 
 term_to_atom(Operator,A_Operator),write(A_Operator), 
 write(','), 
 convert_bw(Value,New_Value), 
 write(New_Value), 
 write(').'),nl, 
 output_conditions(Tail). 
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%========================================================= 
% Prints if there is no conditions that must be meet to 
% execute the policy 
% 
output_no_conditions([]):- fail. 
 
output_no_conditions([Policy|Tail]):- 
 write('no_conditions('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(').'),nl, 
 output_no_conditions(Tail). 
 
%========================================================= 
% When no conditions are associated with a 
% policy, makes note of it. 
% 
print_no_conditions:- 
 setof(Policy,no_conditions(Policy),No_Conditions), 
 output_no_conditions(No_Conditions), 
 true. 
 
%========================================================= 
% Prints out the fact if implicit denies are 
% to applied to conflict detection when both 
% policies are created by the same user 
% 
print_implicit_deny:- 
 user_implicit_deny(Option), 
 write('user_implicit_deny('), 
 write(Option), 
 write(').'),nl, 
 true. 
%========================================================= 
% Prints out a user defined type 
% Helper to "print_types" 
% 
output_types([]):- fail. 
 
output_types([[Type,Element,Value]|Tail]):- 
 write('type('), 
 term_to_atom(Type,A_Type),write(A_Type), 
 write(','), 
 term_to_atom(Element,A_Element),write(A_Element), 
 write(','), 
 write(Value), 
 write(').'),nl, 
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 output_types(Tail). 
 
%========================================================= 
% Prints out all user defined types 
% 
print_types:- 
 setof([Type,Element,Value],type(Type,Element,Value),Types), 
 output_types(Types), 
 true. 
 
%========================================================= 
% For each policy, prints out the target classes 
% effected by it. 
% 
print_target_all:- 
 setof(Policy,target(Policy,_),Policies), 
 output_target_all(Policies), 
 true. 
 
%========================================================= 
% Prints out the class of traffic effected by a policy 
% 
output_target_all([]):- fail. 
 
output_target_all([Policy|Tail]):- 
 target(Policy,Value), 
 write('target('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_target_all(Tail). 
 
%========================================================= 
% Prints out facts about the creator/owner of 
% each policy to be applied to the network. 
% 
print_policy_owner:- 
 setof(Policy,policy_owner(Policy,_),Policies), 
 output_policy_owner(Policies), 
 true. 
 
%========================================================= 
% Output the owner for a policy 
% 
output_policy_owner([]):- fail. 
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output_policy_owner([Policy|Tail]):- 
 policy_owner(Policy,Value), 
 write('policy_owner('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_policy_owner(Tail). 
 
%========================================================= 
% Prints out all the nodes of the network. 
% 
print_nodes:- 
 setof(Label,node_label(Label,_),Labels), 
 output_nodes(Labels), 
 true. 
 
%========================================================= 
% Output a fact for each node in the network 
% These facts are used in the conflict 
% decision process. 
% 
output_nodes([]):- fail. 
 
output_nodes([Label|Tail]):- 
 node_label(Label,Value), 
 write('node_label('), 
 term_to_atom(Label,A_Label),write(A_Label), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_nodes(Tail). 
 
%========================================================= 
% Prints out all the "messages" assciated with a 
% link. 
% 
print_path_messages:- 
 setof(Link,path_message(Link,_),Links), 
 output_path_messages(Links), 
 true. 
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%========================================================= 
% Prints the messages associated with a policy 
% 
print_policy_messages:- 
 setof(Policy,policy_message(Policy,_),Policies), 
 output_policy_messages(Policies), 
 true. 
%========================================================= 
% Outputs the "message" associated with a path 
% 
output_path_messages([]):- fail. 
 
output_path_messages([Link|Tail]):- 
 path_message(Link,Message), 
 write('path_message('), 
 term_to_atom(Link,A_Link),write(A_Link), 
 write(','), 
 term_to_atom(Message,A_Message),write(A_Message), 
 write(').'),nl, 
 output_path_messages(Tail). 
%========================================================= 
% Outputs the "message" associated with a policy 
% 
output_policy_messages([]):- fail. 
 
output_policy_messages([Policy|Tail]):- 
 policy_message(Policy,Message), 
 write('policy_message('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Message,A_Message),write(A_Message), 
 write(').'),nl, 
 output_policy_messages(Ta il). 
 
%========================================================= 
% Prints out all the links of the network 
% 
print_links:- 
 findall(Link,link(Link,_,_),Links),!, 
  remove_dups(Links, Links_nodup),!, 
 output_links(Links_nodup),!, 
 true. 
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%========================================================= 
% Output a link of the network 
% 
output_links([]):- fail.  
 
output_links([Link|Tail]):- 
 link(Link,Src,Dst),!, 
 term_to_atom(Src,Src_atom), 
 term_to_atom(Dst,Dst_atom), 
 term_to_atom(Link,Link_atom), 
 write('link('), 
 write(Link_atom), 
 write(','), 
 write(Src_atom), 
 write(','), 
 write(Dst_atom), 
 write(').'),nl, 
 write('link('), 
 write(Link_atom), 
 write(','), 
 write(Dst_atom), 
 write(','), 
 write(Src_atom), 
 write(').'),nl, 
 output_links(Tail),!,fail. 
 
%========================================================= 
% Outputs a user that is allowed to create 
% policies. 
% 
output_users([]):- fail. 
 
output_users([User|Tail]):- 
 user(User,Level), 
 write('user('), 
 term_to_atom(User,A_User),write(A_User), 
 write(','), 
 term_to_atom(Level,A_Level),write(A_Level), 
 write(').'),nl, 
 output_users(Tail). 
%========================================================= 
% Outputs all the actions associated with each policy 
% 
output_actions([]):- fail. 
 
output_actions([Policy|Tail]):- 
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 policy_action(Policy,Action), 
 write('policy_action('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Action,A_Action),write(A_Action), 
 write(').'),nl, 
 output_actions(Tail). 
 
%========================================================= 
% Prints all the users that are allowed to 
% create policies. 
% 
print_users:- 
 setof(User,user(User,_), User_list), 
 output_users(User_list), 
 true. 
 
%========================================================= 
% Outputs all the actions associated with each policy 
% 
print_actions:- 
 setof(Policy,policy_action(Policy,_), Action_list), 
 output_actions(Action_list), 
 true. 
 
%========================================================= 
% Outputs the parameters associated with a path 
% this includes bandwidth. 
% 
output_params([]):- fail. 
 
output_params([Path|Tail]):- 
 path_param(Path,Att,Op,Value,Unit), 
 write('path_param('), 
 term_to_atom(Path,A_Path),write(A_Path), 
 write(','), 
 term_to_atom(Att,A_Att),write(A_Att), 
 write(','), 
 term_to_atom(Op,A_Op),write(A_Op), 
 write(','), 
 convert_unit(Value,Unit,New_Value), 
 term_to_atom(New_Value,A_Value),write(A_Value), 
 write(','), 
 term_to_atom('MBPS',A_Unit),write(A_Unit), 
 write(').'),nl, 
 output_params(Tail). 
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%========================================================= 
% Prints out all the paramaters associated with 
% each path 
% 
print_path_params:- 
 setof(Path, path_param(Path,_,_,_,_),Paths), 
 output_params(Paths), 
 true. 
 
%========================================================= 
% Prints out the conditions of all policies 
% 
print_condition_list:- 
 setof(Condition_Set,list_of_conditions(_,_,Condition_Set), Conditions), 
 output_conditions(Conditions), 
 true. 
 
%========================================================= 
% Prints out the user defined types involved in the 
% conditions of all policies 
% 
print_condition_list:- 

setof(Condition_Set,list_of_type_conditions(_,_,Condition_Set), 
Conditions), output_conditions(Conditions), true. 

 
%========================================================= 
% Converts Bandwidth unit to a uniform Mbps for 
% comparison reasons 
% 
convert_bw([Value,Unit],New_Value):- 
 convert_unit(Value,Unit,New_Value). 
 
%========================================================= 
convert_unit(Old_Value,'MBPS',Old_Value). 
 
convert_unit(Old_Value,'GBPS',New_Value):- 
 New_Value is Old_Value * 1024. 
 
convert_unit(Old_Value,'KBPS',New_Value):- 
 New_Value is Old_Value / 1024. 
 
convert_unit(Old_Value,'BPS',New_Value):- 
 New_Value is (Old_Value / 1024)/1024. 
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%========================================================= 
% True if there is an link from X->Y or Y->X (undirected link) 
% 
adjacent(X, Y) :- link(_,X,Y); link(_,Y,X). 
 
%========================================================= 
% Concats two lists together 
% 
conc([],L,L). 
conc( [X | L1], L2, [X | L3] ) :- conc(L1,L2,L3). 
 
%========================================================= 
% Is the list of size 1? 
% 
eq1([_|[]]). 
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% Stage2 is the second step in determining policy conflicts. 
% Steps:  * Opens "ppl3.txt" file for policy conflict information 
%   * Prints all paths in the next that are associated with 
%     policies being applied to the network. 
%   * Copies all other neccesary facts from stage two to  
%     the file that will be used in third and final stage three. 
%   * Closes the output file 
% 
% Authors: Neil ROWE, Gary STONE, Ahmet GUVEN 
% 
stage2:-write('Stage 2 started'),nl,  
         open('ppl3.txt',write,output), 
 set_output(output), 
         
 % Print the paths associated with policies. 

% 
 not(all_policy_paths), 
 
 % Print all necessary facts for use in stage three 
         listing(bic_list), 
 not(print_no_conditions), 
 not(print_path_params), 
 not(print_users), 
 print_implicit_deny, 
 not(print_types), 
 not(print_actions), 
 not(print_target_all), 
 not(print_policy_owner), 
 not(print_nodes), 
 not(print_links), 
 not(print_path_messages), 
 not(print_policy_messages), 
 write('condition(_null,_null,_null,_null,_null,_null).'),nl, 
 
 set_output(user_output), 
 close(output), 
 write('Stage 2 complete'),nl,nl. 
 
%========================================================= 
% Prints all paths associated with policies 
% 
all_policy_paths:- 
        policy_path(Pol_Label,Pol_Path), 
        setof(Pol_Paths,collect_paths(Pol_Label,Pol_Paths),Policy_Paths), 
        not(print_path_list(Policy_Paths)), 
 print_conditions(Policy_Paths). 
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%========================================================= 
% Helps to print path associated with policies. 
% 
collect_paths(Pol_Label,Pol_path):-policy_path(Pol_Label,Policy_Path), 
 Pol_path=[Pol_Label|Policy_Path]. 
 
%========================================================= 
% True if there is an link from X->Y or Y->X (undirected link) 
% 
adjacent(X, Y) :- link(_,X,Y); link(_,Y,X). 
 
%========================================================= 
% print_path_list: 
% Output a list of lists, where each 
% list is on a line by itself and 
% all the atoms are quoted. 
% 
print_path_list([]):- fail. 
 
print_path_list([[Policy_Label|Path] | Tail]) :-  
 policy_target(Policy_Label,Policy_Targets), 
 not(eq1([Policy_Label|Path])), 
 write('path('), 
 term_to_atom(Policy_Label,Policy_atom), 
 write(Policy_atom), 
 write(',['), 
 write_path(Path), 
 write(',['), 
 write_path(Policy_Targets), 
 write(').'), nl, not(print_path_list(Tail)),fail. 
 
print_path_list([[Policy_Label|Path] | Tail]) :- 
 not(policy_target(Policy_Label,_)), 
 not(eq1([Policy_Label|Path])), 
 write('path('), 
 term_to_atom(Policy_Label,Policy_atom), 
 write(Policy_atom), 
 write(',['), 
 write_path(Path), 
 write(',[]).'), nl,not(print_path_list(Tail)),fail. 
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%========================================================= 
% Prints the conditions associated with every policy 
% 
print_conditions([]):- fail. 
 
print_conditions([[Policy_Label|Path] | Tail]) :-  
 policy_condition(Policy_Label,Action,Att,Op,Value), 
 not(eq1([Policy_Label|Path])), 
 write('condition('), 
 term_to_atom(Policy_Label,Policy_atom),write(Policy_atom), 
 write(',['), 
 write_path(Path), 
 write(','), 
 term_to_atom(Action,Action_atom),write(Action_atom), 
 write(','), 
 term_to_atom(Att,Att_atom),write(Att_atom), 
 write(','), 
 term_to_atom(Op,Op_atom),write(Op_atom), 
 write(','), 
 term_to_atom(Value,Value_atom),write(Value_atom), 
 write(').'), nl, print_path_list(Tail). 
 
print_conditions([[Policy_Label|Path] | Tail]) :-  
 not(policy_condition(Policy_Label,_,_,_,_)), 
 not(eq1([Policy_Label|Path])), 
 print_path_list(Tail). 
 
%========================================================= 
% Helper function used by print_path_list to output 
% a list with all the atoms quoted. 
% 
write_path([]):- write(']'). 
 
write_path([X|[]]):- term_to_atom(X,X_atom), 
       write(X_atom), 
       write(']'),!,true. 
 
write_path([X|Tail]):- term_to_atom(X,X_atom), 
        write(X_atom), 
        write(','), 
        write_path(Tail). 
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%========================================================= 
% Is the list of size 1? 
% 
eq1([_|[]]). 
 
%========================================================= 
% Prints a user defined type 
% 
output_types([]):- fail. 
 
output_types([[Type,Element,Value]|Tail]):- 
 write('type('), 
 term_to_atom(Type,A_Type),write(A_Type), 
 write(','), 
 term_to_atom(Element,A_Element),write(A_Element), 
 write(','), 
 write(Value), 
 write(').'),nl, 
 output_types(Tail). 
 
%========================================================= 
% Prints all the user defined types 
% 
print_types:- 
 setof([Type,Element,Value],type(Type,Element,Value),Types), 
 output_types(Types), 
 true. 
%========================================================= 
% Prints a policy that has no conditions 
% associated with it. 
% 
output_no_conditions([]):- fail. 
 
output_no_conditions([Policy|Tail]):- 
 write('no_conditions('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(').'),nl, 
 output_no_conditions(Tail). 
 
%========================================================= 
% Prints all the policies that have no conditions 
% associated with them. 
% 
print_no_conditions:- 
 setof(Policy,no_conditions(Policy),No_Conditions), 
 not(No_Conditions = []), 
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 output_no_conditions(No_Conditions), 
 true. 
%========================================================= 
% Prints the owners of all the policies 
% 
print_policy_owner:- 
 setof(Policy,policy_owner(Policy,_),Policies), 
 output_policy_owner(Policies), 
 true. 
 
%========================================================= 
% Prints the owner of a policy 
% 
output_policy_owner([]):- fail. 
 
output_policy_owner([Policy|Tail]):- 
 policy_owner(Policy,Value), 
 write('policy_owner('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_policy_owner(Tail). 
 
%========================================================= 
% Prints the nodes of the network. 
% 
print_nodes:- 
 setof(Label,node_label(Label,_),Labels), 
 output_nodes(Labels), 
 true. 
 
%========================================================= 
% Prints out a node of the network 
% 
output_nodes([]):- fail. 
 
output_nodes([Label|Tail]):- 
 node_label(Label,Value), 
 write('node_label('), 
 term_to_atom(Label,A_Label),write(A_Label), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_nodes(Tail). 
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%========================================================= 
% Prints out all the links of the network 
% 
print_links:- 
 findall(Link,link(Link,_,_),Links),!, 
  remove_dups(Links, Links_nodup),!, 
 output_links(Links_nodup),!, 
 true. 
 
%========================================================= 
% Prints out a link in the network. 
% 
output_links([]):- fail.  
 
output_links([Link|Tail]):- 
 link(Link,Src,Dst),!, 
 term_to_atom(Src,Src_atom), 
 term_to_atom(Dst,Dst_atom), 
 term_to_atom(Link,Link_atom), 
 write('link('), 
 write(Link_atom), 
 write(','), 
 write(Src_atom), 
 write(','), 
 write(Dst_atom), 
 write(').'),nl, 
 write('link('), 
 write(Link_atom), 
 write(','), 
 write(Dst_atom), 
 write(','), 
 write(Src_atom), 
 write(').'),nl, 
 output_links(Tail),!,fail. 
 
%========================================================= 
% Prints out messages associated with each path 
% 
print_path_messages:- 
 setof(Link,path_message(Link,_),Links), 
 output_path_messages(Links),true,!. 
 
%========================================================= 
% Prints the messages associted with each policy 
% 
print_policy_messages:- 
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 setof(Policy,policy_message(Policy,_),Policies), 
 output_policy_messages(Policies),true,!. 
 
%========================================================= 
% Prints the messages associated with a path 
% 
output_path_messages([]):- fail. 
 
output_path_messages([Link|Tail]):- 
 path_message(Link,Message), 
 write('path_message('), 
 term_to_atom(Link,A_Link),write(A_Link), 
 write(','), 
 term_to_atom(Message,A_Message),write(A_Message), 
 write(').'),nl, 
 output_path_messages(Tail),!. 
%========================================================= 
% Prints the messages assocaited with a path 
% 
output_policy_messages([]):- fail. 
 
output_policy_messages([Policy|Tail]):- 
 policy_message(Policy,Message), 
 write('policy_message('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Message,A_Message),write(A_Message), 
 write(').'),nl, 
 output_policy_messages(Tail),!. 
 
%========================================================= 
% Prints out the users who can created policies 
% 
output_users([]):- fail. 
 
output_users([User|Tail]):- 
 user(User,Level), 
 write('user('), 
 term_to_atom(User,A_User),write(A_User), 
 write(','), 
 write(Level), 
 write(').'),nl, 
 output_users(Tail). 
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%========================================================= 
% Prints the actions associated with policy 
% 
output_actions([]):- fail. 
 
output_actions([Policy|Tail]):- 
 policy_action(Policy,Action), 
 write('policy_action('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Action,A_Action),write(A_Action), 
 write(').'),nl, 
 output_actions(Tail). 
 
%========================================================= 
% Prints the paramaters associated with a path 
% 
output_params([]):- fail. 
 
output_params([Path|Tail]):- 
 path_param(Path,Att,Op,Value,Unit), 
 write('path_param('), 
 term_to_atom(Path,A_Path),write(A_Path), 
 write(','), 
 term_to_atom(Att,A_Att),write(A_Att), 
 write(','), 
 term_to_atom(Op,A_Op),write(A_Op), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(','), 
 term_to_atom(Unit,A_Unit),write(A_Unit), 
 write(').'),nl, 
 output_params(Tail). 
 
%========================================================= 
% Prints the parameters of each path 
% 
print_path_params:- 
 setof(Path, path_param(Path,_,_,_,_),Paths), 
 output_params(Paths), 
 true. 
%========================================================= 
% Print the flag identifing whether implicit 
% denies are to be ignored between policies 
% created by the same user 
% 
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print_implicit_deny:- 
 user_implicit_deny(Option), 
 write('user_implicit_deny('), 
 write(Option), 
 write(').'),nl, 
 true. 
 
%========================================================= 
% Prints all the user who can create a policy 
% 
print_users:- 
 setof(User,user(User,_), User_list), 
 output_users(User_list), 
 true. 
  
%========================================================= 
% Prints out all the actions for each policy 
% 
print_actions:- 
 setof(Policy,policy_action(Policy,_), Action_list), 
 output_actions(Action_list), 
 true. 
 
%========================================================= 
% Prints the targets for each policy 
% 
print_target_all:- 
 setof(Policy,target(Policy,_),Policies), 
 output_target_all(Policies), 
 true. 
 
%========================================================= 
% Prints the target for a policy 
% 
output_target_all([]):- fail. 
 
output_target_all([Policy|Tail]):- 
 target(Policy,Value), 
 write('target('), 
 term_to_atom(Policy,A_Policy),write(A_Policy), 
 write(','), 
 term_to_atom(Value,A_Value),write(A_Value), 
 write(').'),nl, 
 output_target_all(Tail). 
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%========================================================= 
% Removes duplicate items from a list 
% 
remove_dups([],[]). 
 
remove_dups([Head|Tail],List):- 
 member(Head,Tail), 
 remove_dups(Tail,List). 
 
remove_dups([Head|Tail],[Head|List]):- 
 not(member(Head,Tail)), 
 remove_dups(Tail,List). 
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% Stage3 is the final step in determining policy conflicts. 
% Steps: * Open "scan_out.txt" file for policy conflict information 
%    * Check policies first overlapping conditions, 
%        then overlapping targets and than overlapping physical 
%        paths to detect conflicts 
%    * Determine policies in conflict 
%    * Print the policy conflicts that could not be resolved 
%    * Print the policy conflicts that COULD be resolved 
%    * Print out the policies that contain "message" conflicts 
%    * Close the output file 
% 
% Authors: Neil ROWE, Gary STONE, Ahmet GUVEN 
% 
 
:- dynamic agenda/3, usedstate/3, compared/6, 
           already_expanded/3,overlapping/2. 
:- style_check(-singleton). 
:- unknown(_, fail). 
 
stage3:- open('scan_out5.txt',write,output), 
  set_output(output), 
 
 %remove duplicate path definitions from the memory 
 clean_memory, 
 
        % Check policies first overlapping conditions, 
            % then overlapping targets and than overlapping physical 
   % paths to detect conflicts. 

% 
 find_conflicting_policies(Conflicting_Policies), 
 
 % Print out policy conflicts that can not be 
 % resolved using the "Id" of the creator 
 % 
 write('                    Print Unresolved Conflicts'),nl, 
 write('                    ========================'),nl, 
 print_unresolved_conflict_list(Conflicting_Policies), 
 
 % Print out the policy conflicts than CAN be resolved 
 % using the "Id" of the policy creator 
 % 
 nl,nl,nl,write('                    Print Resolved Conflicts'),nl, 
 write('                    ========================'),nl, 
 print_resolved_conflict_list(Conflicting_Policies), 
 
 % Print out the policies that require "message" support on a 
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 % path, but all the links of the path do not support that "message" 
 % 
 nl,nl,nl,write('                    Message Conflicts'),nl, 
 write('                    ================='),nl,nl, 
 not(print_message_conflict_list), 
 
 % 
 set_output(user_output), 
 close(output), 
 write('Stage 3 complete'),nl,nl. 
 
%========================================================= 
% Return set of all policies that conflict to eachother. 
% First, policy conditions are compared for conflicts 
% After that policy targets are compared. Only  
% policies which have conflicting targets and  
% conditions are checked for physical overlaps.  
% 
find_conflicting_policies(Conflicting_Policies):- 
 retract_all(compared(_,_,_,_,_,_)), retract_all(overlapping(_,_)), 
         retract_all(already_expanded(_,_,_)).  
 
find_conflicting_policies(Conflicting_Policies):- 
 setof(Overlaps, permit_conflicts(Overlaps),Conflicting_Policies). 
 
find_conflicting_policies(Conflicting_Policies):- 
 not(setof(Overlaps, permit_conflicts(Overlaps),_)). 
 
%========================================================= 
% Compares two policy paths and finds physical overlaps. 
% Compared policy paths are recorded to memory. If the 
% policy paths are compared before, rule returns whether 
% they have overlap or not without seraching. This is an 
% important issue for minimizing the number of policy 
% comparations. 
%  
find_physical_overlaps([Policy1,Path1,Target1,Policy2,Path2,Target2]):- 
 path(Policy1,Path1,Target1), 
 path(Policy2,Path2,Target2),not(Policy1=@=Policy2), 
         ifthen((compared(_,Path1,_,_,Path2,_),not(overlapping(Path1,Path2))), 
         (fail,!)), 
         not compared(Policy1,Path1,Target1,Policy2,Path2,Target2), 
         assertz(compared(Policy1,Path1,Target1,Policy2,Path2,Target2)), 
 ((overlapping(Path1,Path2);overlapping(Path2,Path1)); 
         check_physical_overlap(Path1,Path2),  

assertz(overlapping(Path1,Path2)) ). 
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%========================================================= 
% Checks each policy pair for overlapping targets and conditions. 
% If the targets conditions do overlap, then check checks  
% for the physical path overlaps.  
% 
permit_conflicts([Policy1,Path1,Target1,Policy2,Path2,Target2,Conflicts]):- 
 path(Policy1,Path1,Target1), 
 path(Policy2,Path2,Target2), 
       not(Policy1 = Policy2), 
 conditional_overlap(Policy1,Policy2,_,No_Overlap), 
 No_Overlap = [], 

setof(Conflict,conflict_permit_targets(Policy1,Policy2,Target2, 
Target1,Conflict),Conflicts), 

 not(Conflicts= [[]]), 
find_physical_overlaps([Policy1,Path1,Target1,Policy2,Path2,Target2]). 

  
permit_conflicts([Policy1,Path1,Target1,Policy2,Path2, 

Target2,[[Policy1,Value]]]):- 
 path(Policy1,Path1,Target1), 
 path(Policy2,Path2,Target2), 
 not(Policy1 = Policy2), 
 conditional_overlap(Policy1,Policy2,_,No_Overlap), 
 No_Overlap = [], 
 ( 
 (target(Policy1, permit_all), 
 policy_action(Policy2,deny)); 
 (target(Policy1, deny_all), 
 policy_action(Policy2,permit)) 
 ), 
 target(Policy1,Value),find_physical_overlaps([Policy1,Path1,Target1, 

Policy2,Path2,Target2]). 
 
permit_conflicts( [Policy1,Path1,Target1,Policy2,Path2,Target2, 

[[Policy2,Value]]]):- 
 path(Policy1,Path1,Target1), 
 path(Policy2,Path2,Target2), 
 not(Policy1 = Policy2), 
 conditional_overlap(Policy1,Policy2,_,No_Overlap), 
 No_Overlap = [], 
 ( 
 (target(Policy2, permit_all), 
 policy_action(Policy1,deny)); 
 (target(Policy2, deny_all), 
 policy_action(Policy1,permit))), 

target(Policy2,Value),find_physical_overlaps([Policy1,Path1,Target1, 
Policy2,Path2,Target2]). 
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permit_conflicts(_). 
 
 
%========================================================= 
% Compares a target class element for conflicts with all 
% the target elements of a second policy 
% 
conflict_permit_targets(_,_,[],_,[]). 
 
conflict_permit_targets(Policy1,Policy2,[A1,C,_,V|_],Targets,Results):- 
 conflict_permit_target(Policy1,Policy2,[A1,C,V],Targets,Results), 
 not(empty(Results)). 
 
conflict_permit_targets(Policy1,Policy2,[_,_,_,_|Tail],Targets,Results):- 
 conflict_permit_targets(Policy1,Policy2,Tail,Targets,Results), 
 not(empty(Results)). 
 
%========================================================= 
% Compares the target class and action between two 
% two target elements.  
%  
conflict_permit_target(Policy1,Policy2,['permit',C,V],[],[C,V]):- 
 policy_owner(Policy1, Creator1), 
 policy_owner(Policy2, Creator2), 
 Creator1 = Creator2, 
 user_implicit_deny('no'), 
 fail. 
 
conflict_permit_target(_,_,['permit',C,V],[],[C,V]):- 
 user_implicit_deny('yes'). 
 
conflict_permit_target(_,_,['deny',_,_],[],[]). 
 
conflict_permit_target(_,_,[],_,[]). 
 
conflict_permit_target(_,_,[A1,C,Value],[A2,C,_,Value|_],[C,Value]):- 
 not(A1 = A2),!. 
 
conflict_permit_target(_,_,[A,C,Value],[A,C,_,Value|_],[]):-!. 
 
conflict_permit_target(Policy1,Policy2,[A1,C1,Value1],[_,_,_,_|Tail],Results):- 
 conflict_permit_target(Policy1,Policy2,[A1,C1,Value1],Tail,Results). 
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%========================================================= 
% Determines if a conditional overlap exists by testing each 
% type of condition. 
% 
conditional_overlap(P1,P2,['priority'|Over],No_Over):- 
 priority_overlap(P1,P2), 
 conditional_overlap1(P1,P2,Over,No_Over),!. 
 
conditional_overlap(P1,P2,Over,['priority'|No_Over]):- 
 not(priority_overlap(P1,P2)), 
 conditional_overlap1(P1,P2,Over,No_Over),!. 
 
conditional_overlap1(P1,P2,['time'|Over],No_Over):- 
 time_overlap(P1,P2), 
 conditional_overlap2(P1,P2,Over,No_Over),!. 
 
conditional_overlap1(P1,P2,Over,['time'|No_Over]):- 
 not(time_overlap(P1,P2)), 
 conditional_overlap2(P1,P2,Over,No_Over),!. 
 
conditional_overlap2(P1,P2,['hopcount'|Over],No_Over):- 
 hopcount_overlap(P1,P2), 
 conditional_overlap3(P1,P2,Over,No_Over),!. 
 
conditional_overlap2(P1,P2,Over,['hopcount'|No_Over]):- 
 not(hopcount_overlap(P1,P2)), 
 conditional_overlap3(P1,P2,Over,No_Over),!. 
 
conditional_overlap3(P1,P2,['bandwidth'|Over],No_Over):- 
 bw_overlap(P1,P2), 
 conditional_overlap4(P1,P2,Over,No_Over),!. 
 
conditional_overlap3(P1,P2,Over,['bandwidth'|No_Over]):- 
 not(bw_overlap(P1,P2)), 
 conditional_overlap4(P1,P2,Over,No_Over),!. 
 
conditional_overlap4(P1,P2,['user'|Over],No_Over):- 
 user_overlap(P1,P2), 
 conditional_overlap5(P1,P2,Over,No_Over),!. 
 
conditional_overlap4(P1,P2,Over,['user'|No_Over]):- 
 not(user_overlap(P1,P2)), 
 conditional_overlap5(P1,P2,Over,No_Over),!. 
 
conditional_overlap5(P1,P2,['host'|Over],No_Over):- 
 host_overlap(P1,P2), 
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 conditional_overlap6(P1,P2,Over,No_Over),!. 
 
conditional_overlap5(P1,P2,Over,['host'|No_Over]):- 
 not(host_overlap(P1,P2)), 
 conditional_overlap6(P1,P2,Over,No_Over),!. 
 
conditional_overlap6(P1,P2,['type'|Over],No_Over):- 
 not(overlap_types(P1,P2,_)), 
 conditional_overlap7(P1,P2,Over,No_Over),!. 
 
conditional_overlap6(P1,P2,Over,['type'|No_Over]):- 
 overlap_types(P1,P2,_), 
 conditional_overlap7(P1,P2,Over,No_Over),!. 
 
conditional_overlap7(_,_,[],[]). 
 
%============================================== 
% Determines if there is an overlap between 
% user defined types. 
% 
overlap_types(Policy1, Policy2, Type):- 
 type(Type,_,_), 
 setof(Element,condition(Policy1,_,_,Type,_,Element),Elements1), 
 setof(Element,condition(Policy2,_,_,Type,_,Element),Elements2), 
 not(Elements1 = []), 
 not(Elements2 = []), 
 intersection(Elements1,Elements2,I), 
 I = []. 
 
%============================================== 
% Determines if a priority overlap exists 
% 
priority_overlap(Policy1,Policy1). 
 
priority_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 (not(setof([Op1,Value1],condition(Policy1,_,_,'priority',Op1,Value1),_)); 
  not(setof([Op2,Value2],condition(Policy2,_,_,'priority',Op2,Value2),_))). 
 
priority_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,Value1],condition(Policy1,_,_,'priority',Op1,Value1),Values1), 
 setof([Op2,Value2],condition(Policy2,_,_,'priority',Op2,Value2),Values2), 
 overlap(Values1,Values2). 
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%============================================== 
% Determines if a hopcount overlap exists 
% 
hopcount_overlap(Policy1,Policy1). 
 
hopcount_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 (not(setof([Op1,Value1], 

condition(Policy1,_,_,'hopcount',Op1,Value1),_)); 
not(setof([Op2,Value2], 
condition(Policy2,_,_,'hopcount',Op2,Value2),_))). 

 
hopcount_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,Value1], 

condition(Policy1,_,_,'hopcount',Op1,Value1),Values1), 
 setof([Op2,Value2], 

condition(Policy2,_,_,'hopcount',Op2,Value2),Values2), 
 overlap(Values1,Values2). 
 
%============================================== 
% Determines if a bandwidth overlap exists 
% 
bw_overlap(Policy1,Policy1). 
 
bw_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 (not(setof([Op1,Value1],condition(Policy1,_,_,'BW',Op1,Value1),_)); 
  not(setof([Op2,Value2],condition(Policy2,_,_,'BW',Op2,Value2),_))). 
 
bw_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,Value1],condition(Policy1,_,_,'BW',Op1,Value1),Values1), 
 setof([Op2,Value2],condition(Policy2,_,_,'BW',Op2,Value2),Values2), 
 overlap(Values1,Values2). 
 
%============================================== 
% Determines if a time overlap exists 
% 
time_overlap(Policy1,Policy1). 
 
time_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 (not(setof([Op1,Time1],condition(Policy1,_,_,'time',Op1,Time1),_)); 
  not(setof([Op2,Time2],condition(Policy2,_,_,'time',Op2,Time2),_))). 
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time_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,Time1],condition(Policy1,_,_,'time',Op1,Time1),Times1), 
 setof([Op2,Time2],condition(Policy2,_,_,'time',Op2,Time2),Times2), 
 overlap(Times1,Times2). 
 
%============================================== 
% An overlap exists if ALL elements of a condition 
% overlap. The overlap rule uses the operator and value 
% of two conditional elements to determine if overlaps 
% exist 
% 
overlap([],[_|_]). 
 
overlap([_|_],[]). 
 
overlap([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2]):- 
 not([[Op2,Value2]|Tail2] = []), 
 not([[Op1,Value1]|Tail1] = []), 
 overlap1(Value1,Op1,Value2,Op2), 
 overlap(Tail1,[[Op2,Value2]|Tail2]), 
 overlap([[Op1,Value1]|Tail1],Tail2). 
 
%============================================== 
% Helper rule to "overlap" above. 
% Detemines if an overlap exists between 
% two conditional elements. 
% 
overlap1(Value1,_,Value1,_). 
 
overlap1(_,'>=',_,'>='). 
 
overlap1(Value1,'>=',Value2,'<='):- 
 Value1 < Value2. 
 
overlap1(_,'<=',_,'<='):- true. 
 
overlap1(Value1,'<=',Value2,'>='):- 
 Value1 > Value2. 
 
%============================================== 
% Determines if there is an overlap between 
% users. Each user in the conditional element 
% list is checked, and if any user 
% overlap exists, then the policy contains a 
% user overlap. 
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% 
user_overlap(Policy1,Policy1). 
 
user_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 (not(setof([Op1,User1],condition(Policy1,_,_,'user_id',Op1,User1),_)); 
  not(setof([Op2,User2],condition(Policy2,_,_,'user_id',Op2,User2),_))). 
 
user_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,User1],condition(Policy1,_,_,'user_id',Op1,User1),Users1), 
 setof([Op2,User2],condition(Policy2,_,_,'user_id',Op2,User2),Users2), 
 user_overlap1(Users1,Users2,Results), 
 flatten(Results,Flat_Results), 
 not(member('conflict',Flat_Results)), 
 member('overlap',Flat_Results), 
 true. 
 
user_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,User1],condition(Policy1,_,_,'user_id',Op1,User1),Users1), 
 setof([Op2,User2],condition(Policy2,_,_,'user_id',Op2,User2),Users2), 
 user_overlap1(Users1,Users2,Results), 
 flatten(Results,Flat_Results), 
 member('conflict',Flat_Results), 
 fail. 
 
%============================================== 
% Helper rule to "user_overlap" above. 
% Determines if user element lists overlap 
% with at least one common user 
% 
user_overlap1([],[_|_],[]). 
 
user_overlap1([_|_],[],[]). 
 
user_overlap1([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2], 

[Result1,Result2,Result3]):- 
 not([[Op2,Value2]|Tail2] = []), 
 not([[Op1,Value1]|Tail1] = []), 
 user_overlap2(Value1,Op1,Value2,Op2,Result1), 
 user_overlap1(Tail1,[[Op2,Value2]|Tail2],Result2), 
 user_overlap1([[Op1,Value1]|Tail1],Tail2,Result3). 
 
user_overlap1([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2],[Result2,Result3]):- 
 not([[Op2,Value2]|Tail2] = []), 
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 not([[Op1,Value1]|Tail1] = []), 
 not(user_overlap2(Value1,Op1,Value2,Op2,_)), 
 user_overlap1(Tail1,[[Op2,Value2]|Tail2],Result2), 
 user_overlap1([[Op1,Value1]|Tail1],Tail2,Result3). 
 
%============================================== 
% Helper rule to "user_overlap1" above 
% Determines if two user values overlap 
% Can return "No overlap", "Overlap", or "Conflict" 
% 
user_overlap2(Value,Op,Value,Op,'overlap'). 
 
user_overlap2(Value1,'==',Value2,'==','nooverlap'):- 
 not(Value1 = Value2). 
 
user_overlap2(Value1,'==',Value2,'!=','overlap'):- 
 not(Value1 = Value2). 
 
user_overlap2(Value1,'==',Value1,'!=','conflict'). 
 
% This makes an assumption that there are many/infinite users 
% If there were limited user, then maybe they should be a "type" instead. 
% 
user_overlap2(_,'!=',_,'!=','overlap'). 
 
%============================================== 
% Determines if there is an overlap in host identifiers 
% 
host_overlap(Policy1,Policy1). 
 
host_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 (not(setof([Op1,Add1],condition(Policy1,_,_,'host_id',Op1,Add1),_)); 
  not(setof([Op2,Add2],condition(Policy2,_,_,'host_id',Op2,Add2),_))). 
 
host_overlap(Policy1,Policy2):- 
 not(Policy1 = Policy2), 
 setof([Op1,Add1],condition(Policy1,_,_,'host_id',Op1,Add1),Addresses1), 
 setof([Op2,Add2],condition(Policy2,_,_,'host_id',Op2,Add2),Addresses2), 
 host_overlap1(Addresses1,Addresses2,Results), 
 flatten(Results,Flat_Results), 
 not(member('conflict',Flat_Results)), 
 member('overlap',Flat_Results), 
 true. 
 
host_overlap(Policy1,Policy2):- 
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 not(Policy1 = Policy2), 
 setof([Op1,Add1],condition(Policy1,_,_,'host_id',Op1,Add1),Addresses1), 
 setof([Op2,Add2],cond ition(Policy2,_,_,'host_id',Op2,Add2),Addresses2), 
 host_overlap1(Addresses1,Addresses2,Results), 
 flatten(Results,Flat_Results), 
 member('conflict',Flat_Results), 
 fail. 
 
%============================================== 
% Helper rule to "host_overlap" above 
% Progresses through the list of host addresses from 
% two policies looking for an overlap 
% 
host_overlap1([],[_|_],[]). 
 
host_overlap1([_|_],[],[]). 
 
host_overlap1([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2], 

[Result1,Result2,Result3]):- 
 not([[Op2,Value2]|Tail2] = []), 
 not([[Op1,Value1]|Tail1] = []), 
 not(address_overlap(Value1,Value2)), 
 host_overlap2(Op1,'X',Op2,'Y',Result1), 
 host_overlap1(Tail1,[[Op2,Value2]|Tail2],Result2), 
 host_overlap1([[Op1,Value1]|Tail1],Tail2,Result3). 
 
host_overlap1([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2], 

[Result1,Result2,Result3]):- 
 not([[Op2,Value2]|Tail2] = []), 
 not([[Op1,Value1]|Tail1] = []), 
 address_overlap(Value1,Value2), 
 host_overlap2(Op1,'X',Op2,'X',Result1), 
 host_overlap1(Tail1,[[Op2,Value2]|Tail2],Result2), 
 host_overlap1([[Op1,Value1]|Tail1],Tail2,Result3). 
 
host_overlap1([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2],[Result2,Result3]):- 
 not([[Op2,Value2]|Tail2] = []), 
 not([[Op1,Value1]|Tail1] = []), 
 address_overlap(Value1,Value2), 
 not(host_overlap2(Op1,'X',Op2,'X',_)), 
 host_overlap1(Tail1,[[Op2,Value2]|Tail2],Result2), 
 host_overlap1([[Op1,Value1]|Tail1],Tail2,Result3). 
 
host_overlap1([[Op1,Value1]|Tail1],[[Op2,Value2]|Tail2],[Result2,Result3]):- 
 not([[Op2,Value2]|Tail2] = []), 
 not([[Op1,Value1]|Tail1] = []), 
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 not(address_overlap(Value1,Value2)), 
 not(host_overlap2(Op1,'X',Op2,'Y',_)), 
 host_overlap1(Tail1,[[Op2,Value2]|Tail2],Result2), 
 host_overlap1([[Op1,Value1]|Tail1],Tail2,Result3). 
 
%============================================== 
% Helper rule to "host_overlap1" above 
% Determines if two host values overlap using 
% the specified comparison operator 
% 
host_overlap2('==',X,'==',X,'overlap'). 
 
host_overlap2('==',X,'==',Y,'nooverlap'):- not(X = Y). 
 
host_overlap2('==',X,'!=',X,'conflict'). 
 
host_overlap2('==',X,'!=',Y,'overlap'):- not(X = Y). 
 
host_overlap2('!=',X,'==',X,'conflict'). 
 
host_overlap2('!=',X,'==',Y,'overlap'):- not(X = Y). 
 
host_overlap2('!=',X,'!=',X,'overlap'). 
 
host_overlap2('!=',X,'!=',Y,'overlap'):- not(X = Y). 
 
%============================================== 
% Determines if IP protocol addresses overlap 
% 
 
address_overlap([Dot1|Tail1],[Dot2|Tail2]):- 
 Dot1 = Dot2, 
 address_overlap(Tail1,Tail2). 
 
address_overlap([Dot1|_],[Dot2|_]):- 
 Dot1 = '*'; 
 Dot2 = '*'. 
 
address_overlap([],[]). 
 
%============================================== 
% Determines if message specified for a policy path 
% is supported by each link that composes the path 
% 
message_conflict(Policy,[Policy,Results]):- 
 path(Policy,_,_), 
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 setof(Link, message_conflict_helper(Policy,[_,Link]), Links), 
 flatten(Links,Flattened_Links), 
 generate_list_pairs(Flattened_Links, List_of_Pairs), 
 remove_dups(List_of_Pairs,Results). 
 
message_conflict(Policy,[]):- 
 path(Policy,_,_), 
 not(setof(Link, message_conflict_helper(Policy,[_,Link]), _)). 
 
%============================================== 
% Given a policy, return a list of links that do 
% NOT support the needed "messages" 
% 
message_conflict_helper(Policy,[Policy,Results]):- 
 path(Policy,Path,_), 
 policy_message(Policy,Message), 
 message_supported(Path,Message,Results), 
 not(Results = []). 
%============================================== 
% Create a list of link, message pairs such that 
% the pairs returned do NOT support the needed "message" 
% 
message_supported([],_,[]). 
 
message_supported([Src,Dst],Message,[Link,Message]):- 
 link(Link,Src,Dst), 
 not(path_message(Link,Message)). 
 
message_supported([Src,Dst],Message,[]):- 
 link(Link,Src,Dst), 
 path_message(Link,Message). 
 
message_supported([Src,Dst|Tail], Message, Results):- 
 link(Link,Src,Dst), 
 path_message(Link,Message), 
 message_supported([Dst|Tail], Message,Results). 
 
message_supported([Src,Dst|Tail], Message, [Link,Message|Results]):- 
 link(Link,Src,Dst), 
 not(path_message(Link,Message)), 
 message_supported([Dst|Tail], Message,Results). 
 
 
%============================================== 
% Modify a given list of items into a list of 
% pairs, taking two elements at time to form 
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% the pairs. 
% 
generate_list_pairs([],[]). 
 
generate_list_pairs([Node,Message|Tail],[[Node,Message]|Tail_Results]):- 
 generate_list_pairs(Tail,Tail_Results). 
 
%========================================================= 
% Remove duplicate items from a list 
% 
remove_dups([],[]). 
 
remove_dups([Head|Tail],List):- 
 member(Head,Tail), 
 remove_dups(Tail,List). 
 
remove_dups([Head|Ta il],[Head|List]):- 
 not(member(Head,Tail)), 
 remove_dups(Tail,List). 
%========================================================= 
% Concat two lists together 
% 
conc([],L,L). 
 
conc( [X | L1], L2, [X | L3] ) :- conc(L1,L2,L3). 
 
%========================================================= 
% Is a list empty 
% 
empty([]):- true. 
 
empty([_|_]):- fail. 
 
%========================================================= 
% Compares two policy paths for physical overlaps 
% 
 
% if a wildcard character is used to represent all paths 
% it has overlapping links with any other policy paths 
%  
check_physical_overlap(*,List). 
 
check_physical_overlap(List,*). 
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% deals with cases like {*,A,*} 
% 
check_physical_overlap([*,A,*],List):- !, member(*,List);expand(List). 
 
check_physical_overlap(Lis t,[*,A,*]):- !, member(*,List);expand(List). 
 
% If two nodes are being compared: if they are  
% same, there is an overlap. If they are not, 
% there is no overlap 
% 
check_physical_overlap([A],[B]):-A=@=B,!. 
 
check_physical_overlap([A],[B]):-not(A=@=B),!,fail,!. 
 
% calls 'check_physical_overlap1' and 'check_physical_overlap2'  
% to deal with the cases when one of the policy paths a single node 
% and the other is one using a wildcard character. 
% 
check_physical_overlap([A],[C,*,D]):- !,check_physical_overlap1([A],[C,*,D]),!. 
 
check_physical_overlap([C,*,D],[A]):- !,check_physical_overlap2([C,*,D],[A]),!. 
 
% calls 'check_physical_overlap3'and 'check_physical_overlap4'  
% to deal with the cases when one of the policy paths a single  
% node and the other is one is list of nodes. 
% 
check_physical_overlap([A],List):- !,check_physical_overlap3([A],List),!. 
 
check_physical_overlap(List,[A]):- !,check_physical_overlap4(List,[A]),!. 
 
% calls and 'check_physical_overlap5' to deal with the cases  
% when both of the policy paths use wildcard characters. 
% 
check_physical_overlap([A,*,B],[C,*,D]):-!, 

check_physical_overlap5([A,*,B],[C,*,D]),!. 
 
%deals with the cases when one of the policy paths is 
%a link and the other uses wildcard characters. 
% 
check_physical_overlap([A,B],[C,*,D]):-!, 

check_physical_overlap6([A,B],[C,*,D]),!. 
 

check_physical_overlap([C,*,D],[A,B]):-!, 
check_physical_overlap7([C,*,D],[A,B]),!. 
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%========================================================= 
% deals with the cases when one of the policy paths (first one) 
% a single node and the other is one using a wildcard character. 
% returns overlap if the node is in the same biconnected component 
% with any of the wildcard path nodes or the node is the either  
% the source or destination node. 
% 
check_physical_overlap1([A],[C,*,D]):-A=@=C;A=@=D. 
 
% If the node is in the same biconnected group with either of source  
% or destination node of wildcard path, there is a overlap 
% 
check_physical_overlap1([A],[C,*,D]):-bic_list(_,Biconnected_Group), 
        member(A,Biconnected_Group),member(C,Biconnected_Group); 
       member(A,Biconnected_Group),member(D,Biconnected_Group),!. 
 
 
% If the node is in a diffent biconnected component than the other  
% policy nodes, returns no overlap.  
% 
check_physical_overlap1([A],[C,*,D]):-bic_list(_,Biconnected_Group1), 
 member(C,Biconnected_Group1), 
 member(D,Biconnected_Group1), 
 not member(A,Biconnected_Group1),!,fail,!. 
 
%If the problem can not be solved with previous cases 
% 
check_physical_overlap1([A],[C,*,D]):- check_physical_overlap8([A],[C,*,D]). 
 
%========================================================= 
% deals with the cases when one of the policy paths (second one) 
% a single node and the other is one using a wildcard character. 
% returns overlap if the node is in the same biconnected component 
% with any of the wildcard path nodes or the node is the either  
% the source or destination node. 
% 
check_physical_overlap2([C,*,D],[A]):-A=@=C;A=@=D. 
 
% If the node is in the same biconnected group with either of source  
% or destination node of wildcard path, there is a overlap 
% 
check_physical_overlap2([C,*,D],[A]):-bic_list(_,Biconnected_Group), 
 member(A,Biconnected_Group),member(D,Biconnected_Group); 
         member(A,Biconnected_Group),member(C,Biconnected_Group),!. 
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% If the node is in a diffent biconnected component than the other  
% policy nodes, returns no overlap.  
% 
check_physical_overlap2([C,*,D],[A]):-bic_list(_,Biconnected_Group1), 
 member(C,Biconnected_Group1), 
 member(D,Biconnected_Group1), 
 not member(A,Biconnected_Group1),!,fail,!. 
 
%If the problem can not be solved with previous cases 
% 
check_physical_overlap2([C,*,D],[A]):- check_physical_overlap8([C,*,D],[A]). 
%========================================================= 
% deals with the cases when one of the policy paths a single node 
% (first one) and the other is one is list of nodes.Expands list 
% and returns overlap if the node is a member of the list. 
% 
check_physical_overlap3([A],List):-expand(List,List1), 
 member(A,List1). 
 
%========================================================= 
% deals with the cases when one of the policy paths a single node 
% (second one) and the other is one is list of nodes.Expands list 
% and returns overlap if the node is a member of the list. 
% 
check_physical_overlap4(List,[A]):-expand(List,List1), 
 member(A,List1). 
 
 
%========================================================= 
% Deals with the cases when both of the policy paths use  
% wildcard charachters. 
% 
 
% Return overlap if the paths are the same 
% 
check_physical_overlap5([A,*,B],[C,*,D]):-A=@=C,B=@=D,!. 
 
% If both paths have the same destination, then they 
% overlap if both source nodes are in the same biconnected 
% component 
check_physical_overlap5([A,*,B],[C,*,D]):- 

B=@=D,bic_list(_,Biconnected_Group), 
          (member(A,Biconnected_Group), member(C,Biconnected_Group)),!. 
 
% If the source nodes are the same, there is an overlap 
% if the destination nodes are in the same biconnected 
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% component 
% 
check_physical_overlap5([A,*,B],[C,*,D]):- 

A=@=C,bic_list(_,Biconnected_Group), 
         (member(B,Biconnected_Group), member(D,Biconnected_Group)),!. 
 
% If the source nodes are in the same biconnected component, 
% and the destination nodes are together in a different biconnected 
% component, returns overlap. 
% 
check_physical_overlap5([A,*,B],[C,*,D]):-bic_list(_,Biconnected_Group1), 
        bic_list(_,Biconnected_Group2), 
        member(A,Biconnected_Group1), member(C,Biconnected_Group1), 
        member(B,Biconnected_Group2), member(D,Biconnected_Group2),!. 
 
% Deals with the cases when one source-destination pair 
% in one biconnected component, and the other is in a  
% different one. In this case there is no need to compare 
% paths. it returns 'no overlap'. 
% 
check_physical_overlap5([A,*,B],[C,*,D]):-bic_list(_,Biconnected_Group1), 
 member(A,Biconnected_Group1), member(B,Biconnected_Group1), 
         not member(C,Biconnected_Group1), 
 not member(D,Biconnected_Group1),!,fail,!; 
 bic_list(_,Biconnected_Group1),member(C,Biconnected_Group1), 
 member(D,Biconnected_Group1), 
         not member(A,Biconnected_Group1), 
 not member(B,Biconnected_Group1),!,fail,!. 
          
% Deals with the cases when both of the policy paths use 
% wildcard characters. deals with the cases if all 
% of the nodes in the same biconnected component.Paths 
% must be expanded. But this rule Sends the 
% biconnected component members to the subroutine to limit 
% the number of visited nodes while detecting paths. 
% 
check_physical_overlap5([A,*,B],[C,*,D]):-bic_list(_,Biconnected_Group), 
       (member(A,Biconnected_Group), member(B,Biconnected_Group), 
        member(C,Biconnected_Group), member(D,Biconnected_Group)), 
        limited_expand_paths(A,B,Biconnected_Group,Path1),!, 
        limited_expand_paths(C,D,Biconnected_Group,Path2),!, 
        check_physical_overlap(Path1,Path2),!. 
 
%If the problem can not be solved with previous cases 
% 
check_physical_overlap5([A,*,B],[C,*,D]):- 
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check_physical_overlap8([A,*,B],[C,*,D]). 
 

%========================================================= 
% Deals with the cases when one of the policy paths is 
% a link and the other uses wildcard characters. 
% 
 
% Returns overlap if the link nodes are the same with 
% the source and destination nodes 
% 
check_physical_overlap6([A,B],[C,*,D]):-A=@=C,B=@=D. 
 
% If the link nodes and the source and destination nodes are 
% in different biconnected components, there is no need to 
% expand path. It returns 'no overlap'. 
%  
check_physical_overlap6([A,B],[C,*,D]):-bic_list(_,Biconnected_Group1), 
 member(C,Biconnected_Group1),member(D,Biconnected_Group1), 
 not member(A,Biconnected_Group1),  
 not member(B,Biconnected_Group1),!,fail,!. 
 
% If link nodes and the source and destination nodes are 
% in the same biconnected component, it calls subroutine 
% to expand path again with limited number of nodes. 
% After that checks whether they overlap or not. 
% 
check_physical_overlap6([A,B],[C,*,D]):-bic_list(_,Biconnected_Group), 
 (member(A,Biconnected_Group), member(B,Biconnected_Group), 
         member(C,Biconnected_Group), member(D,Biconnected_Group)), 
         limited_expand_paths(C,D,Biconnected_Group,Path2),!, 
         check_physical_overlap(Path1,Path2),!. 
 
%If the problem can not be solved with previous cases 
% 
check_physical_overlap6([A,B],[C,*,D]):- 

check_physical_overlap8([A,B],[C,*,D]). 
 

%========================================================= 
% Deals with the cases when one of the policy paths is 
% a link and the other uses wildcard characters. 
% 
 
% Returns overlap if the link nodes are the same with 
% the source and destination nodes 
% 
check_physical_overlap7([C,*,D],[A,B]):-A=@=C,B=@=D. 
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% If link nodes and the source and destination nodes are 
% in the same biconnected component, it calls subroutine 
% to expand path again with limited number of nodes. 
% After that checks whether they overlap or not. 
% 
check_physical_overlap7([C,*,D],[A,B]):-bic_list(_,Biconnected_Group), 
 (member(A,Biconnected_Group), member(B,Biconnected_Group), 
         member(C,Biconnected_Group), member(D,Biconnected_Group)), 
         limited_expand_paths(C,D,Biconnected_Group,Path2),!, 
         check_physical_overlap(Path2,Path1),!. 
 
% If link nodes and the source and destination nodes are 
% in the same biconnected component, it calls subroutine 
% to expand path again with limited number of nodes. 
% After that checks whether they overlap or not. 
% 
check_physical_overlap7([C,*,D],[A,B]):-bic_list(_,Biconnected_Group), 
 (member(A,Biconnected_Group), member(B,Biconnected_Group), 
         member(C,Biconnected_Group), member(D,Biconnected_Group)), 
         limited_expand_paths(C,D,Biconnected_Group,Path2),!, 
         check_physical_overlap(Path2,Path1),!. 
 
%If the problem can not be solved with previous cases 
% 
check_physical_overlap7([C,*,D],[A,B]):- 

check_physical_overlap8([C,*,D],[A,B]). 
 

%========================================================= 
% deals with the rest of the cases which can not be solved by  
% previous rules. Checks is a list is a sublist of the other one.  
% 
check_physical_overlap8(S,L):-expand(S,S1),expand(L,L1), 
 conc(_,L2,L1), conc(S1,_,L2),!. 
 
%========================================================= 
% It calls depth limited bidirectional search algorithm 
% to find all paths between two nodes. Depth value is fixed  
% to 15 from both sides (forward and backward) and can simply 
% be changed by changing the values in pharantehesis. 
% After finding all paths between two nodes, 
% they are recorded to the memory. In case it is required 
% to expand same nodes for a different policy definition, 
% rule returns already expanded paths without a search 
% 
expand_paths(A, Z,Expanded_Paths) :-  
 setof(Path,bisearch(A, Z, Path, 15, 15),Expanded_Paths), 
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 assertz(already_expanded(A,Z,Expanded_Paths)). 
 
%========================================================= 
% Depth Limited Bidirectional Search Algorithm 
% in depth value is sent from calling rule. If 
% the possible paths already detected before, 
% it simply returns the list of expanded paths. 
% 
bisearch(Node1,Node2,Expanded_Paths,_,_):- 
 already_expanded(Node1,Node2,Expanded_Paths),!. 
 
bisearch(Node,Node,[Node],_,_). 
 
bisearch(Node1,Node2,[Node1,Node2],_,_) :-  
 (link(_,Node1,Node2); link(_,Node2,Node1)). 
 
bisearch(Node1,Node2,AnsPath, Depth1, Depth2) :-  
 retractall(agenda(_,_,_,_)), 
   retractall(usedstate(_,_,_,_)), retractall(counter(_)),  
 retractall(answer(_)),assertz(agenda(Node1,[Node1],front, Depth1)), 
   assertz(agenda(Node2,[Node2],back, Depth2)), repeatifagenda, 
   ((agenda(State,Path,front, DepthF), agenda(StateB,PathB,back, DepthB),  
     add_successors(front,State,Path,DepthF), 
    add_successors(back,StateB,PathB,DepthB)); 
    (agenda(State,Path,front, DepthF),  

not agenda(StateB,PathB,back, DepthB),  
     add_successors(front,State,Path,DepthF) ); 
    (not agenda(State,Path,front, DepthF),  

agenda(StateB,PathB,back, DepthB),  
     add_successors(back,StateB,PathB,DepthB))), 
   ((agenda(State3,Path3,front, Depth3),  
     (agenda(State3,Path4,back, Depth4); 

 usedstate(State3,Path4,back, Depth4))); 
    (agenda(State3,Path4,back, Depth5), 
     (agenda(State3,Path3,front, Depth6); 

 usedstate(State3,Path4,front, Depth6)))), 
   Path3=[_|XP0], reverse(XP0,XP1), append(XP1,Path4,AnsPath), 

 not duplication(AnsPath), not answer(AnsPath), 
 assertz(answer(AnsPath)). 

 
bisearch(_,_,_,_) :- fail. 
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%========================================================= 
% Helps to Depth Limited Bidirectional Search Algorithm 
% 
repeatifagenda. 
 
repeatifagenda :- agenda(_,_,_,_), !, repeatifagenda. 
 
%========================================================= 
% Helps to Depth Limited Bidirectional Search Algorithm 
% Adds successors to nodes if the depth limit is not 
% exceeded. 
% 
add_successors(Dir,State,Path,Depth) :-  
 Depth >0, NewDepth is Depth-1, 
 (link(_,State,Newstate); 

 link(_,Newstate,State)), not member(Newstate,Path),  
 not agenda(Newstate,[Newstate|Path],Dir, NewDepth), 
   not usedstate(Newstate,[Newstate|Path],Dir, NewDepth),  
   assertz(agenda(Newstate,[Newstate|Path],Dir, NewDepth)), fail. 
 
add_successors(Dir,State,Path, Depth) :-  

retract(agenda(State,Path,Dir, Depth)), 
   assertz(usedstate(State,Path,Dir, Depth)). 
 
%========================================================= 
% Helps to Depth Limited Bidirectional Search Algorithm 
% Checkes if the list have duplicate members 
% 
duplication([X|L]) :- member(X,L), !. 
 
duplication([_|L]) :- duplication(L). 
 
%========================================================= 
% It calls revised version of the Depth Limited  
% Bidirectional Search Algorithm to fing the paths 
% between two nodes. 
% 
limited_expand_paths(A, Z,Biconnected_Components,Expanded_Paths) :-  
 setof(Path,limited_bisearch(A, Z, Path, 15, 15,Biconnected_Components), 
 Expanded_Paths),assertz(already_expanded(A,Z,Expanded_Paths)). 
 
%========================================================= 
% Revised version of the Depth Limited Bidirectional  
% Search Algorithm. It only uses the nodes belong 
% to one biconnected component. It helps to  
% limit the number of nodes visited by decreasing 
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% the search space. Again the paths expandd before 
% returned without a search.  
% 
limited_bisearch(Node1,Node2,Expanded_Paths,_,_,_):- 
 already_expanded(Node1,Node2,Expanded_Paths),!. 
 
limited_bisearch(Node,Node,[Node],_,_,_). 
 
limited_bisearch(Node1,Node2,[Node1,Node2],_,_,_) :-  
 (link(_,Node1,Node2); link(_,Node2,Node1)). 
 
limited_bisearch(Node1,Node2,AnsPath, Depth1, Depth2, 

Biconnected_Components) :-  
 retractall(agenda(_,_,_,_)),retractall(usedstate(_,_,_,_)), 
         retractall(counter(_)), retractall(answer(_)), 
         assertz(agenda(Node1,[Node1],front, Depth1)), 
         assertz(agenda(Node2,[Node2],back, Depth2)), repeatifagenda, 
         ((agenda(State,Path,front, DepthF), agenda(StateB,PathB,back, DepthB),  
         add_successors1(front,State,Path,DepthF,Biconnected_Components), 
         add_successors1(back,StateB,PathB,DepthB,Biconnected_Components) ); 
         (agenda(State,Path,front, DepthF), 

 not agenda(StateB,PathB,back, DepthB),  
         add_successors1(front,State,Path,DepthF,Biconnected_Components) ); 
         (not agenda(State,Path,front, DepthF), 

 agenda(StateB,PathB,back, DepthB),  
         add_successors1(back,StateB,PathB,DepthB,Biconnected_Components))), 
         ((agenda(State3,Path3,front, Depth3),  
        (agenda(State3,Path4,back, Depth4); 

 usedstate(State3,Path4,back, Depth4))); 
         (agenda(State3,Path4,back, Depth5), 
         (agenda(State3,Path3,front, Depth6); 

 usedstate(State3,Path4,front, Depth6)))), 
         Path3=[_|XP0], reverse(XP0,XP1), append(XP1,Path4,AnsPath), 
       not duplication(AnsPath), not answer(AnsPath), 

assertz(answer(AnsPath)). 
 
limited_bisearch(_,_,_,_,_) :- fail. 
 
%========================================================= 
% Helps to Depth Limited Bidirectional Search Algorithm 
% Adds successors to nodes from the biconnected 
% component list if the depth limit is not exceeded. 
% 
add_successors1(Dir,State,Path,Depth,Biconnected_Components) :-  
 Depth >0, NewDepth is Depth-1, 
         (member(Newstate,Biconnected_Components), 
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link(_,State,Newstate); link(_,Newstate,State)), 
         not member(Newstate,Path),not agenda(Newstate,[Newstate|Path], 

Dir, NewDepth), 
         not usedstate(Newstate,[Newstate|Path],Dir, NewDepth),  
         assertz(agenda(Newstate,[Newstate|Path],Dir, NewDepth)), fail. 
 
add_successors1(Dir,State,Path, Depth,Biconnected_Components) :-  
         retract(agenda(State,Path,Dir, Depth)), 

assertz(usedstate(State,Path,Dir, Depth)). 
 
%========================================================= 
% print_conflict_list: 
% Outputs nicely each policy conflict that could not 
% be resolved using the ID of policy's creator 
% 
print_unresolved_conflict_list([]). 
 
print_unresolved_conflict_list([[_,_,_,_,_,_,[]]|Tail]):- 
 print_unresolved_conflict_list(Tail). 
 
print_unresolved_conflict_list([[Policy1,Path1,Target1,Policy2,Path2, 

Target2,Permit_results]|Tail]) :- 
 policy_owner(Policy1,Owner1), 
 policy_owner(Policy2,Owner2), 
 user(Owner1,Value1), 
 user(Owner2,Value2), 
 Value1 = Value2, 
 nl,nl,write('Conflict '), 
 write(Policy1), 
 write(' <==> '), 
 write(Policy2),nl, 
 write('   '), 
 write(Policy1), 
 write(' Path = ['), 
 write_path(Path1),nl, 
 write('   '), 
 write(Policy1), 
 write(' Targets: '), 
 write_targets(Target1),nl, 
 write('   '), 
 write(Policy2), 
 write(' Path = ['), 
 write_path(Path2),nl, 
 write('   '), 
 write(Policy2), 
 write(' Targets: '), 
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 write_targets(Target2),nl, 
 write('   '), 
 write('Target Conflicts: '), 
 print_list(Permit_results),nl, 
 print_unresolved_conflict_list(Tail). 
 
print_unresolved_conflict_list([[Policy1,_,_,Policy2,_,_,_]|Tail]) :- 
 policy_owner(Policy1,Owner1), 
 policy_owner(Policy2,Owner2), 
 user(Owner1,Value1), 
 user(Owner2,Value2), 
 not(Value1 = Value2), 
 print_unresolved_conflict_list(Tail). 
 
%========================================================= 
% print_conflict_list: 
% Outputs nicely policy conflicts that could be 
% resolved using the ID of the policy's creator 
% 
print_resolved_conflict_list([]). 
 
print_resolved_conflict_list([[_,_,_,_,_,_,[]]|Ta il]):- 
 print_resolved_conflict_list(Tail). 
 
print_resolved_conflict_list([[Policy1,Path1,Target1,Policy2,Path2, 

Target2,Permit_results]|Tail]) :- 
 policy_owner(Policy1,Owner1), 
 policy_owner(Policy2,Owner2), 
 user(Owner1,Value1), 
 user(Owner2,Value2), 
 not(Value1 = Value2), 
 nl,nl,write('Conflict '), 
 write(Policy1), 
 write(' <==> '), 
 write(Policy2),nl, 
 write('   '), 
 write(Policy1), 
 write(' Path = ['), 
 write_path(Path1),nl, 
 write('   '), 
 write(Policy1), 
 write(' Targets: '), 
 write_targets(Target1),nl, 
 write('   '), 
 write(Policy2), 
 write(' Path = ['), 
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 write_path(Path2),nl, 
 write('   '), 
 write(Policy2), 
 write(' Targets: '), 
 write_targets(Target2),nl, 
 write('   '), 
 write('Target Conflicts: '), 
 print_list(Permit_results),nl, 
 print_how_resolved(Policy1,Value1,Policy2,Value2), 
 print_resolved_conflict_list(Tail). 
 
print_resolved_conflict_list([[Policy1,_,_,Policy2,_,_,_]|Tail]) :- 
 policy_owner(Policy1,Owner1), 
 policy_owner(Policy2,Owner2), 
 user(Owner1,Value1), 
 user(Owner2,Value2), 
 Value1 = Value2, 
 print_resolved_conflict_list(Tail). 
 
%========================================================= 
% Prints nicely the how the a policy conflict was resolved 
% 
print_how_resolved(Policy1,Value1,Policy2,Value2):- 
 Value1 < Value2, 
 write('   '), 
 write('Resolved: '), 
 write(Policy1), 
 write('(Priority = '), 
 write(Value1), 
 write(')'), 
 write(' overrides=> '), 
 write(Policy2), 
 write('(Priority = '), 
 write(Value2), 
 write(') '),nl. 
  
print_how_resolved(Policy1,Value1,Policy2,Value2):- 
 Value2 < Value1, 
 write('   '), 
 write('Resolved: '), 
 write(Policy2), 
 write('(Priority = '), 
 write(Value2), 
 write(')'), 
 write(' overrides=> '), 
 write(Policy1), 
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 write('(Priority = '), 
 write(Value1), 
 write(') '),nl. 
 
%========================================================= 
% Prints nicely a list of elements 
% 
print_list([]). 
 
print_list([[C|V] | Tail]):- 
 not(empty(Tail)), 
 write(C), 
 write(' = '), 
 write(V), 
 write(', '), 
 print_list(Tail). 
 
print_list([[C|V] | Tail]):- 
 empty(Tail), 
 write(C), 
 write(' = '), 
 write(V). 
 
%========================================================= 
% write_path: 
% is a helper function used to output 
% a list with all the atoms quoted. 
 
write_path([]):- write(']'). 
 
write_path([X|[]]):-  
       write(X), 
       write(']'),!,true. 
 
write_path([X|Tail]):- 
        write(X), 
        write(','), 
        write_path(Tail). 
 
%========================================================= 
% writes nicely the target list of a policy 
% 
write_targets([]):- write('[]'). 
 
write_targets([A,C,_,V|[]]):-  
 write(A), 
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 write(' '), 
 write(C), 
 write('=['), 
 write(V), 
 write(']'),!,true. 
 
write_targets([A,C,_,V|Tail]):- 
 write(A), 
 write(' '), 
 write(C), 
 write('=['), 
 write(V), 
 write('], '), 
 write_targets(Tail). 
 
%========================================================= 
% Prints out any message conflicts beween a path 
% and the links used to compose it. 
% First step is to generate the list of conflicts 
%  step 2 is to output a list if not empty 
% 
print_message_conflict_list:- 
 not(setof(Link_Message, 

 print_message_conflict_list_helper(Link_Message),_)),fail. 
 
print_message_conflict_list:- 
 setof(Link_Message, 

 print_message_conflict_list_helper(Link_Message),Message_Conflicts), 
 write_message_conflicts(Message_Conflicts),fail. 
 
%========================================================= 
% Returns a list of links and nodes that do not support 
% the "messages" require by a policy path 
% 
print_message_conflict_list_helper(Message_Conflicts):- 
 path(Policy,_,_),setof(Link_Message, 

message_conflict(Policy,Link_Message),Message_Conflicts). 
 
%========================================================= 
% Prints nicely all the policies that contain message conflicts 
% 
write_message_conflicts([]). 
 
write_message_conflicts([Message_Conflict|Tail]):- 
 write_message_conflict(Message_Conflict),nl, 
 write_message_conflicts(Tail). 
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%========================================================= 
% Writes out a individual message conflict for a policy 
% 
write_message_conflict([]). 
 
write_message_conflict([[Policy, Message_list] | Policy_Message_Tail]) :- 
 write(Policy),write(' requires message support on the following links'),nl, 
 write_message_conflict_helper1(Message_list), 
 write_message_conflict(Policy_Message_Tail). 
 
%========================================================= 
% Prints each link that does not support the "message" on the path 
% 
write_message_conflict_helper1([]). 
 
write_message_conflict_helper1([[Link,Message] |Tail]):- 
 write('     '), 
 write('link "'),write(Link),write('" requires support  

for message "'),write(Message),write('"'),nl, 
 write_message_conflict_helper1(Tail). 
  
%========================================================= 
% Expand Policy paths. if the path is using wildcard character, 
% it uses Depth Limited Bidirectional Search or its revised version. 
% if the path is a list of nodes created by user, it checks whether 
% that path really exists in network or not. 
% 
expand([A,'*',B|Tail],Path):- bic_list(_,Biconnected_Components), 
       (member(A,Biconnected_Components), 

member(B,Biconnected_Components)), 
       limited_expand_paths(A,B,Biconnected_Components,Path1), 
       expand(Tail,Expanded_Tail), Path2=[Path1|Expanded_Tail], 
       flatten(Path2,Path). 
 
expand([A,'*',B|Tail],Path):-  
       expand_paths(A,B,Path1), 

expand(Tail,Expanded_Tail), Path2=[Path1|Expanded_Tail], 
       flatten(Path2,Path). 
 
expand([X],[X]). 
 
expand([X,Y|Tail],[X,Y|Path]):-not(X=@='*'),(link(_,X,Y);link(_,Y,X)), 
 Tail1=[Y|Tail], expand(Tail1, Path). 
 
expand([],[]). 
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%========================================================= 
% Helper Prolog rule representin If-Then statements 
% 
ifthen(P,Q):-call(P),!,call(Q). 
 
ifthen(_,_). 
 
 
%========================================================= 
%  Removes duplicate path definitions from the memory to prevent redundant  
% path comprasions.  
% 
clean_memory:-path(Label1,Path1,Target1), 
 path(Label2,Path2,Target2), 
 ifthen(path(Label1,Path1,Target1)=@=path(Label2,Path2,Target2), 
 retract(path(Label2,Path2,Target2))). 
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APPENDIX E. IMPORTANT ARTICULATION POINT THEOREMS  

(Source: Prof. Geoffrey Xie) 

 

A. THEOREM-1 

Consider a fully connected topology with bidirectional links. Leta and b be two 

arbitrary nodes in the topology.  If the topology does not have any articulation point, then 

for any link in the topology, there exists a loop-free path in ,*,a b< >  that goes through 

the link.  

 

B. THEOREM-2 

Consider a fully connected topology with bidirectional links.  Let a and b be two 

distinct nodes and c da an outbound interface in the topology.  No path in ,*,a b< > goes 

through interface c da if and only if removal of all nodes and links of any path 

in ,*,a c< >  will disconnect nodes d and b . 
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APPENDIX F. THE COMPILING RESULT FILE OF THE 40-NODE 
SAMPLE FILE WITH THE PREVIOUS COMPILER 

(The previous compiler can not detect all conflicts) 

                    Print Unresolved Conflicts 

                    ======================== 

   Conflict Policy7 <==> Policy13 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy13 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy13 Targets: permit traffic_class=[data] 

   Target Conflicts: traffic_class = [data] 

   

   Conflict Policy7 <==> Policy15 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy15 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy15 Targets: permit traffic_type=[research] 

   Target Conflicts: traffic_type = [research] 

 

  Conflict Policy7 <==> Policy20 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy20 Path = [n19,n10,n22,n17,n8,n16] 

   Policy20 Targets: permit traffic_security=[Private] 
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   Target Conflicts: traffic_security = [Private] 

 

   Conflict Policy7 <==> Policy4 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy4 Path = [n19,n10,n22,n17,n8,n16] 

   Policy4 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 

 

                    Print Resolved Conflicts 

                    ======================== 

   Conflict Policy7 <==> Policy8 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy8 Path = [n5,n3,n17,n22,n30,n28] 

   Policy8 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 

   Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)  
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APPENDIX G. THE COMPILING RESULT FILE OF THE 40-NODE 
SAMPLE FILE WITH THE IMPROVED COMPILER  

(The improved compiler can detect conflicts that could not be detected by the previous 

version. The additional conflicts are marked using an italic font.) 

                    Print Unresolved Conflicts 

                    ======================== 

   Conflict Policy13 <==> Policy15 

   Policy13 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy13 Targets: permit traffic_class=[data]  

   Policy15 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy15 Targets: permit traffic_type=[research] 

   Target Conflicts: traffic_type = [research] 

 

   Conflict Policy13 <==> Policy7 

   Policy13 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy13 Targets: permit traffic_class=[data]  

   Policy7 Path = [n17]  

   Policy7 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 

 

   Conflict Policy15 <==> Policy13 

   Policy15 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy15 Targets: permit traffic_type=[research] 

   Policy13 Path = [n24,n30,n22,n17,n8,n13,n2] 
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   Policy13 Targets: permit traffic_class=[data]  

   Target Conflicts: traffic_class = [data] 

 

  Conflict Policy15 <==> Policy7 

   Policy15 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy15 Targets: permit traffic_type=[research] 

   Policy7 Path = [n17]  

   Policy7 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 

 

   Conflict Policy17 <==> Policy8 

   Policy17 Path = [n1,n13,n8]  

   Policy17 Targets: deny node_traffic=[n4], deny node_traffic=[n8] 

   Policy8 Path = [n1,n13,n8]  

   Policy8 Targets: [] 

   Target Conflicts: Policy8 = [permit_all] 

 

   Conflict Policy19 <==> Policy20 

   Policy19 Path = [n19,n10,n22,n17,n8,n16]  

   Policy19 Targets: [] 

   Policy20 Path = [n19,n10,n22,n17,n8,n16]  

   Policy20 Targets: permit traffic_security=[Private]  

   Target Conflicts: traffic_security = [Private]  
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   Conflict Policy19 <==> Policy4 

   Policy19 Path = [n19,n10,n22,n17,n8,n16]  

   Policy19 Targets: [] 

   Policy4 Path = [n19,n10,n22,n17,n8,n16]  

   Policy4 Targets: [] 

   Target Conflicts: Policy19 = [deny_all] 

 

  Conflict Policy20 <==> Policy19 

   Policy20 Path = [n19,n10,n22,n17,n8,n16]  

   Policy20 Targets: permit traffic_security=[Private]  

   Policy19 Path = [n19,n10,n22,n17,n8,n16]  

   Policy19 Targets: [] 

   Target Conflicts: Policy19 = [deny_all] 

 

   Conflict Policy20 <==> Policy7 

   Policy20 Path = [n19,n10,n22,n17,n8,n16]  

   Policy20 Targets: permit traffic_security=[Private]  

   Policy7 Path = [n17]  

   Policy7 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 

 

   Conflict Policy4 <==> Policy19 

   Policy4 Path = [n19,n10,n22,n17,n8,n16]  
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   Policy4 Targets: [] 

   Policy19 Path = [n19,n10,n22,n17,n8,n16]  

   Policy19 Targets: [] 

   Target Conflicts: Policy4 = [permit_all] 

 

  Conflict Policy4 <==> Policy20 

   Policy4 Path = [n19,n10,n22,n17,n8,n16]  

   Policy4 Targets: [] 

   Policy20 Path = [n19,n10,n22,n17,n8,n16]  

   Policy20 Targets: permit traffic_security=[Private]  

   Target Conflicts: traffic_security = [Private]  

 

   Conflict Policy4 <==> Policy7 

   Policy4 Path = [n19,n10,n22,n17,n8,n16]  

   Policy4 Targets: [] 

   Policy7 Path = [n17]  

   Policy7 Targets: [] 

   Target Conflicts: Policy4 = [permit_all] 

 

   Conflict Policy7 <==> Policy13 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy13 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy13 Targets: permit traffic_class=[data] 
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   Target Conflicts: traffic_class = [data] 

 

 

   Conflict Policy7 <==> Policy15 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy15 Path = [n24,n30,n22,n17,n8,n13,n2] 

   Policy15 Targets: permit traffic_type=[research] 

   Target Conflicts: traffic_type = [research] 

 

   Conflict Policy7 <==> Policy20 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy20 Path = [n19,n10,n22,n17,n8,n16] 

   Policy20 Targets: permit traffic_security=[Private] 

   Target Conflicts: traffic_security = [Private] 

 

   Conflict Policy7 <==> Policy4 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy4 Path = [n19,n10,n22,n17,n8,n16] 

   Policy4 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 
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   Conflict Policy8 <==> Policy17 

   Policy8 Path = [n1,n13,n8]  

   Policy8 Targets: [] 

   Policy17 Path = [n1,n13,n8]  

   Policy17 Targets: deny node_traffic=[n4], deny node_traffic=[n8] 

   Target Conflicts: Policy8 = [permit_all] 

 

                    Print Resolved Conflicts 

                    ======================== 

   Conflict Policy2 <==> Policy8 

   Policy2 Path = [n5,n3,n17,n22,n30,n28]  

   Policy2 Targets: deny node_traffic=[n11]  

   Policy8 Path = [n5,n3,n17,n22,n30,n28]  

   Policy8 Targets: [] 

   Target Conflicts: Policy8 = [permit_all] 

   Resolved: Policy8(Priority = 3) overrides=> Policy2(Priority = 4)  

 

  Conflict Policy7 <==> Policy8 

   Policy7 Path = [n17] 

   Policy7 Targets: [] 

   Policy8 Path = [n5,n3,n17,n22,n30,n28] 

   Policy8 Targets: [] 

   Target Conflicts: Policy7 = [deny_all] 
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   Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)  

 

  Conflict Policy8 <==> Policy2 

   Policy8 Path = [n5,n3,n17,n22,n30,n28]  

   Policy8 Targets: [] 

   Policy2 Path = [n5,n3,n17,n22,n30,n28]  

   Policy2 Targets: deny node_traffic=[n11]  

   Target Conflicts: Policy8 = [permit_all] 

   Resolved: Policy8(Priority = 3) overrides=> Policy2(Priority = 4)  

 

   Conflict Policy8 <==> Policy7 

   Policy8 Path = [n5,n3,n17,n22,n30,n28]  

   Policy8 Targets: [] 

   Policy7 Path = [n17]  

   Policy7 Targets: [] 

   Target Conflicts: Policy8 = [permit_all] 

   Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)  
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APPENDIX H. 80-NODE MESH TOPOLOGY SAMPLE FILE USED 
IN TESTING MORE DIFFUCULT CASES 

define node n1,n2,n3,n4,n5,n6,n7,n8,n9,n10; 
define node n11,n12,n13,n14,n15,n16,n17,n18,n19,n20; 
define node n21,n22,n23,n24,n25,n26,n27,n28,n29,n30; 
define node n31,n32,n33,n34,n35,n36,n37,n38,n39,n40; 
define node n41,n42,n43,n44,n45,n46,n47,n48,n49,n50; 
define node n51,n52,n53,n54,n55,n56,n57,n58,n59,n60; 
define node n61,n62,n63,n64,n65,n66,n67,n68,n69,n70; 
define node n71,n72,n73,n74,n75,n76,n77,n78,n79,n80; 
 
define link n13_n1 <n13,n1>,n13_n2 <n13,n2>, n13_n12 <n13,n12>; 
define link n3_n9 <n3,n9>, n3_n4 <n3,n4>, n3_n5 <n3,n5>, n3_n14 <n3,n14>; 
define link n7_n6 <n7,n6>, n6_n11 <n6,n11>,n11_n17 <n11,n17>, n11_n18 
<n11,n18>; 
define link n8_n13 <n8,n13>, n8_n16 <n8,n16>, n8_n20 <n8,n20>, n8_n21 
<n8,n21>; 
define link n17_n8 <n17,n8>, n17_n3 <n17,n3>, n17_n22 <n17,n22>; 
define link n22_n10 <n22,n10>, n22_n25 <n22,n25>, n22_n30 <n22,n30>; 
define link n10_n15 <n10,n15>, n10_n19 <n10,n19>; 
define link n25_n23 <n25,n23>, n23_n35 <n23,n35>, n35_n27 <n35,n27>; 
define link n30_n24 <n30,n24>, n30_n29 <n30,n29>, n30_n28 <n30,n28>, 
n30_n33 <n30,n33>; 
define link n26_n30 <n26,n30>, n26_n31 <n26,n31>,n26_n7 <n26,n7>; 
define link n33_n32 <n33,n32>; 
define link n32_n36 <n32,n36>, n32_n37 <n32,n37>, n32_n38 <n32,n38>; 
define link n31_n38 <n31,n38>, n31_n39 <n31,n39>, n31_n40 <n31,n40>, 
n31_n34 <n31,n34>; 
define link n11_n41 <n11,n41>; 
define link n12_n42 <n12,n42>; 
define link n41_n53 <n41,n53>, n42_n53 <n42,n53>, n52_n53 <n52,n53>; 
define link n53_n48 <n53,n48>, n48_n56 <n48,n56>, n48_n60 <n48,n60>, 
n48_n61 <n48,n61>; 
define link n48_n57 <n48,n57>, n57_n43 <n57,n43>, n43_n49 <n43,n49>; 
define link n43_n44 <n43,n44>, n45_n43 <n45,n43>, n43_n54 <n43,n54>; 
define link n57_n51 <n57,n51>, n51_n46 <n51,n46>, n46_n47 <n46,n47>; 
define link n51_n58 <n51,n58>, n58_n62 <n58,n62>, n57_n62 <n57,n62>; 
define link n62_n50 <n62,n50>, n50_n55 <n50,n55>, n50_n59 <n50,n59>; 
define link n62_n70 <n62,n70>, n70_n64 <n70,n64>, n70_n69 <n70,n69>; 
define link n70_n68 <n70,n68>, n70_n73 <n70,n73>, n70_n66 <n70,n66>; 
define link n73_n72 <n73,n72>, n72_n76 <n72,n76>, n72_n77 <n72,n77>; 
define link n72_n78 <n72,n78>, n78_n71 <n78,n71>, n66_n71 <n66,n71>; 
define link n71_n79 <n71,n79>, n71_n80 <n71,n80>, n71_n74 <n71,n74>; 
define link n62_n65 <n62,n65>, n65_n63 <n65,n63>, n63_n75 <n63,n75>; 
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define link n75_n67 <n75,n67>,n75_n1 <n75,n1>; 
 
/* 
 * Define the paths used in the network policies 
 */ 
define path n27_n25 {<n27,*, n25>}; 
define path n27_n23 {<n27, *, n23>}; 
define path n1_n8 {<n1,*,n8>}; 
define path n12_n17 {<n12, *, n17>}; 
define path n7_n37 {<n7,*,n37>}; 
define path n19_n16 {<n19,*,n16>}; 
define path n5_n28 {<n5,*,n28>}; 
define path n24_n2 {<n24,*,n2>}; 
define path n30_n70 {<n30,*,n70>}; 
define path n66_n77 {<n66,*,n77>}; 
define path n19_n55 {<n19,*,n55>}; 
define path n71_n44 {<n71,*,n44>}; 
define path n11_n39 {<n11,*,n39>}; 
define path n39_n27 {<n39,n31,n26,n30,n22,n25,n23,n35,n27>}; 
 
/*  
 * Define the users who can create policies 
 */ 
define policy_maker Net_Manager(1), Xie(3), Rowe(3), Stone(4); 
 
/* 
 * User defined classes of traffic which can be used 
 * in the target element of policy rules 
 */ 
define class traffic_type {research, university}; 
define class traffic_class {data, video, voice}; 
define class traffic_security {Private, Public}; 
define class traffic_priority {High, Med, Low}; 
define class node_traffic {n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12}; 
 
/* 
 * User defined type that can be used in the conditional element 
 * of a policy rule. 
 */ 
define type day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, 
Sunday}; 
 
/* 
 * Paramaters associated with links and paths 
 */ 
define link_param n13_n1 {BW := 100MBPS, delay(), loss_rate(),jitter()}; 
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/* 
 * Format of Policy Term: 
 * PolicyID UserID {paths} {target} {conditions} {action_items}; 
 */ 
 
 
Policy1 Net_Manager {n27_n25,n30_n70} {*}{jitter() < 50 MSEC, delay() < 10 
Msec}{permit}; 
 
/* 
 * Deny all traffic from NSF on the link between NASA and SPAWAR 
 */ 
Policy2 Stone {n5_n28,n7_n37} {node_traffic == {n11}} {*} {deny}; 
 
/* 
 * Permit all traffic unconditionally on the two paths 
 * specified with the NPS_CERT path definition 
 */ 
Policy3 Rowe {n7_n37,n66_n77} {*} {*} {permit}; 
 
/* 
 * Permit all traffic unconditionally on the NASA->IETF link 
 */ 
Policy4 Net_Manager {n19_n16,n19_n55} {*} {*} {permit}; 
 
/* 
 * Deny all university traffic after 1100 on the 
 * NPS->DARPA link 
 */ 
Policy5 Net_Manager {n12_n17,n71_n44} {traffic_type == {university}} {time 
>= 1100} {deny}; 
 
/* 
 * Deny university traffic after 1300 on the 
 * NPS->DARPA link 
 */ 
Policy6 Net_Manager {n12_n17,n11_n39} {traffic_type == {university}} {time 
>= 1300} {deny}; 
 
/* 
 * Deny all traffic from hosts with and address beginning 
 * with 131. 
 */ 
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Policy7 Net_Manager {n17} {*} {hostIP == 131.*.*.*} {deny}; 
 
/* 
 * Permit all traffic from hosts whos addresses begin with 
 * either 153.20.8 or 131.40. 
 */ 
Policy8 Xie {n1_n8,n5_n28} {*} {hostIP == 153.20.8.*, hostIP == 131.40.*.*} 
{permit}; 
 
/* 
 * Permit and assign a priority of 3 to video traffic before the hour 
 * of 0800, on the NPS->DARPA link 
 */ 
Policy9 Net_Manager  {n7_n37} {traffic_class == {video}} {time <=0759} 
{priority := 3}; 
 
/* 
 * Deny video traffic on the NPS->DARPA link between the hours of 0800 and 
1600 
 */ 
Policy10 Net_Manager {n7_n37} {traffic_class == {video}} {time >=0800, time 
<=1600} {deny}; 
 
/* 
 * Permit and assign a priority of 5 to video traffic after the hour 
 * of 1600 on the NPS->DARPA link 
 */ 
Policy11 Net_Manager {n7_n37} {traffic_class == {video}} {time >=1601} 
{priority := 5}; 
 
Policy12 Net_Manager {n27_n25,n27_n23} {*}{jitter() < 50 MSEC, loss_rate() 
< 20%}{permit}; 
 
Policy13 Net_Manager {n24_n2} {traffic_class == {data}} {*} {permit}; 
 
Policy14 Net_Manager {n39_n27} {*} {time >= 1600:30, day == Monday} 
{deny}; 
 
Policy15 Net_Manager {n24_n2,n39_n27,n7_n37} {traffic_type == {research}} 
{time >= 0800, time <= 1600} {priority :=1}; 
 
Policy16 Stone {n7_n37}{traffic_priority =={Low}} {time >= 0800, time <= 
1600} {deny}; 
 
Policy17 Xie {n1_n8} {node_traffic == {n4,n8}} {*} {deny}; 
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Policy18 Rowe {n7_n37} {traffic_security == {Public}} {*} {deny}; 
 
Policy19 Net_Manager {n19_n16} {*} {time >= 0800, time <= 0815} {deny}; 
 
Policy20 Net_Manager {n19_n16} {traffic_security == {Private}} {time >=0800, 
time <= 0815} {permit}; 
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